Gsx2 controls region-specific activation of neural stem cells and injury-induced neurogenesis in the adult subventricular zone

Alejandro López-Juárez,1 Jennifer Howard,1 Kristy Ullom,1 Lindsey Howard,1 Andrew Grande,1,2,6 Andrea Pardo,1,7 Ronald Waclaw,1,3,4 Yu-Yo Sun,1,8 Dianer Yang,1,8 Chia-Yi Kuan,1,4,8 Kenneth Campbell,1,2,4,5 and Masato Nakafuku1,2,4,9

Neural stem cells (NSCs) reside in widespread regions along the lateral ventricle and generate diverse olfactory bulb (OB) interneuron subtypes in the adult mouse brain. Molecular mechanisms underlying their regional diversity, however, are not well understood. Here we show that the homeodomain transcription factor Gsx2 plays a crucial role in the region-specific control of adult NSCs in both persistent and injury-induced neurogenesis. In the intact brain, Gsx2 is expressed in a regionally restricted subset of NSCs and promotes the activation and lineage progression of stem cells, thereby controlling the production of selective OB neuron subtypes. Moreover, Gsx2 is ectopically induced in damaged brains outside its normal expression domains and is required for injury-induced neurogenesis in the subventricular zone (SVZ). These results demonstrate that mobilization of adult NSCs is controlled in a region-specific manner and that distinct mechanisms operate in continuous and injury-induced neurogenesis in the adult brain.

Keywords: stem cell; adult neurogenesis; regional identity; injury; stroke

Supplemental material is available for this article.

Received March 10, 2013; revised version accepted May 3, 2013.
progression of stem cells are controlled in the adult SVZ and DG [Ninkovic and Götz 2007]. Not surprisingly, many of these mechanisms are also common between stem/progenitor cells in embryos and adults. However, one notable difference is that most, if not all, stem/progenitor cells in embryos undergo rapid cell divisions, whereas adult NSCs remain mostly quiescent or divide infrequently [Morshead et al. 1994; Maslov et al. 2004; Bonaguidi et al. 2011]. Thus, the long-term maintenance of NSCs and their lineage progression to TAPs, the first step in mobilization of NSCs toward neurogenesis, is not only unique but also crucial for persistent adult neurogenesis. Such regulatory steps appear common in the long-lasting stem cell systems of many adult organs and tissues, but the underlying mechanisms are not well understood [Simons and Clevers 2011].

Beside these common features, there are some important differences between stem cells in the SVZ and DG. One notable distinction is that NSCs in the DG generate only a single neuronal subtype, DG granule cells, whereas those in the SVZ produce multiple distinct neuronal subtypes that populate different laminae of the OB and exert distinct physiological functions [Lledo et al. 2008]. Moreover, a recent study has reported that the overall ratio of the production of these diverse OB neuron subtypes is maintained over an extended period in adults [Shook et al. 2012]. As a mechanism underlying such neuronal diversity, recent studies have provided evidence that NSCs residing in distinct subregions of the SVZ are committed to generating different neuronal subtypes [Merkle et al. 2007]. In fact, NSCs distribute widely along the dorsoventral [DV] and anterior–posterior [AP] axes of the LV [Mirzadeh et al. 2008]. Recent studies have also shown that the rostral migratory stream [RMS]—a specialized migratory path for NBs from the SVZ to the OB—and the OB itself contain NSCs [Gritti et al. 2002; Giachino and Taylor 2009]. Details of such regional specificity of NSCs, however, are largely unknown.

In this study, we show that the homeodomain transcription factor Gsx2 plays an important role in such region-specific control of adult NSCs. Our conditional loss-of-function [LOF] and gain-of-function [GOF] analyses in vivo demonstrate that Gsx2 promotes the activation and subsequent lineage progression in a discrete subset of NSCs in the adult SVZ, thereby controlling the production of specific OB neuron subtypes. Moreover, we found that hypoxia–ischemia [H/I] and neurotoxic injury induce Gsx2 in widespread regions of the stem cell niche and that such ectopic Gsx2 plays a crucial role in injury-induced neurogenesis. Thus, Gsx2 is a crucial region-specific regulator of adult NSCs in both continuous neurogenesis and injury-induced regenerative responses.

Results

Regionally restricted expression of Gsx2 in the adult SVZ

To facilitate expression analysis of Gsx2 in the adult brain, we used a Gsx2-specific antibody [Toresson et al. 2000] as well as Gsx2GFP-KI/+ mice in which the cDNA for green fluorescent protein [GFP] is knocked into the Gsx2 locus, and thus GFP recapitulates the expression of endogenous Gsx2 [Wang et al. 2009]. In coronal sections of the adult brain, where the LV is maximally extended along the DV axis, a cluster of Gsx2+/Gsx2-GFP+ cells were found in the dorsolateral [dl] region of the SVZ, forming a narrow arcuate band flanked by the striatum ventrolaterally and the corpus callosum [CC] and LV dorsally and medially, respectively [Fig. 1A–C’']. Although a few Gsx2+ cells were also detected along the lateral [l] wall of the LV, they were rare in the dorsal roof [dr], medial [m], and ventral [v] regions [Fig. 1D–D']. Thus, the vast majority of Gsx2+ cells [93.4% ± 6.7%, n = 4 animals] are confined to the dLSVZ [Supplemental Fig. 1F]. This region-restricted expression of Gsx2 is in sharp contrast to the much broader expression patterns of Ascl1, Dlx2, and KI67 that represent active neurogenesis all along the LV [Supplemental Fig. 1A–A’]. Thus, among broad neurogenic niches, Gsx2 expression is confined to one of the predominantly active regions, the dLSVZ. We detected similar numbers of Gsx2+ cells in the same region of young and mature adult animals [2 and 10 mo old, respectively] [Fig. 3C, below; data not shown].

We further characterized the specificity of Gsx2 expression along the AP axis of the brain. The dorsally restricted expression of Gsx2 is maintained in the posterior SVZ, adjacent to the striatum laterally and the hippocampal fimbria medially [Fig. 1G,H]. Notably, no Gsx2+ cells were detected in the SGZ of the DG, another known stem cell niche [data not shown]. However, a small number of Gsx2+ cells were detected in the periventricular region overlaying the hippocampus where NSCs contribute to injury-induced neurogenesis [Fig. 1I; Nakatomi et al. 2002]. Along the anteriormost part of the LV, Gsx2+ cells were found all along the SVZ [Fig. 1F]. The lack of the DV selectivity in this region is probably because the dorsal domain is disproportionally represented relative to its ventral counterpart in the coronal plane, while the LV gradually converges anteriorly into the ventrally located RMS [Fig. 1A]. More anteriorly, the anterior RMS contains fewer Gsx2+ than its posterior half, and no Gsx2+ cells were found in the OB [Fig. 1E–E’; data not shown]. Thus, Gsx2+ cells are widespread along the AP axis yet confined to a restricted subset of cells along the DV axis.

Previous studies have shown the dorsally restricted expression of the homeodomain factor Pax6 and the zinc finger factor Sp8 in the SVZ, which but cell types express these transcription factors remains uncharacterized [Hack et al. 2005; Kohwi et al. 2005; Waclaw et al. 2006]. We found that ~44% and 37% of Gsx2-GFP+ cells in the dLSVZ express Pax6 and Sp8, respectively, but few cells coexpress all three [Fig. 1I–J’']. Moreover, many more Pax6+ and Sp8+ cells were found than Gsx2-GFP+ cells, and these Gsx2+/Pax6+ and Gsx2+/Sp8+ cells were mutually exclusive populations that corresponded to Dlx2+ NBs [Fig. 1I,K, Supplemental Fig. 1G]. An exception was Pax6+ cells in the dorsal roof region [dLSVZ or pallial SVZ], where few Gsx2+ cells were found [Figs. 1I, 3N].
More ventrally, staining with an antibody that detects both Gsx2 and its close homolog, Gsx1 (i.e., pan-Gsx) (Kriks et al. 2005), detected cells not only in the dlSVZ, but also in other regions of the SVZ, except for the dorsal roof (Fig. 1L, Supplemental Fig. 1C). Further analysis using Gsx1-EGFP mice from GENSAT (http://www.gensat.org) (Pei et al. 2011) demonstrated that Gsx1-GFP and Gsx2 show clear complementary patterns along the DV axis.
Gsx2 is expressed in aNSCs and TAPs

We next examined which cell types express Gsx2 in the adult neurogenic niche. Gsx2 expression was found only in a small fraction of total cells in these regions (9.2% and 5.9% of total DAPI+ cells in the dLSVZ but not in the ISVZ or vSVZ [Supplemental Fig. 3J–K]). Thus, Gsx1 and Gsx2 are likely to be expressed in distinct sets of cells. Two other homedomain factors, Nkx2.1 and Pbx3a, also showed expression patterns complementary to Gsx2 [Fig. 1M,N]. Finally, in Glil-nLacZ mice, in which the nuclear targeted LacZ transgene is knocked into the Shh-responsive Glil gene [Bai et al. 2002], a large cluster of Glil-nLacZ+ cells surrounded the vSVZ, and fewer immunoreactive cells resided dorsally [Fig. 1O, Supplemental Fig. 1D–E; Balordi and Fishell 2007]. We found no overlap between Glil-nLacZ and Gsx2 in the dLSVZ or ISVZ. Together, these results demonstrate that Gsx2 is expressed in a regionally restricted subset of cells in the adult SVZ and that such Gsx2+ cells partially overlap with Pax6+ and Sp8+ cells dorsally but are segregated from Gsx1+, Pbx3a+, Nkx2.1+, and Glil-nLacZ+ cells ventrally [summarized in Fig. 1P].

Gsx2 is a region-specific regulator of adult neurogenesis

Mice homozygous for a null allele of Gsx2 die at birth, precluding functional analysis of Gsx2 in adults [Szucsik et al. 1997]. Therefore, we used the CreER-loxp system for its conditional inactivation. We generated mice homozygous for a floxed allele of Gsx2 (Gsx2flox) [Waclaw et al. 2009] and heterozygous for a GLAST-CreER knock-in allele [Mori et al. 2006]. The latter contains a CreER transgene expressed from the locus of the glutamate transporter gene GLAST so that CreER is expressed in GFAP+/GLAST+ adult stem cells. The mice also carried the CAG-CAT (CC)-EGFP Cre reporter allele that allowed us to track the fate of recombined cells as GFP+ cells [Nakamura et al. 2006]. GLAST-CreER;CC-EGFP mice carrying Gsx2flox+ and Gsx2flox− showed no noticeable differences compared with the wild-type mice and therefore were used as control for Gsx2 conditional knockout (cko) (Gsx2flox/−GLAST-CreER;CC-EGFP) mice. The CreER activator tamoxifen (Tx) was administered to these animals at the age of 8–12 wk and subsequently analyzed 9 and 56 d after the first Tx treatment [hereafter D9 and D56, respectively]. A whole-mount view of the SVZ demonstrated widespread recombination in the SVZ of Tx-treated animals [Supplemental Fig. 3A]. Moreover, the distribution pattern of GFP+ cells along the DV axis of the LV was similar to that of Dlx2+ and Ki67+ cells derived from Gsx2-nonexpressing cells.

To further examine the mode of proliferation of Gsx2+ cells, we used two paradigms of 5-bromo-2′-deoxyuridine (BrdU) labeling. TAPs and NBs are rapidly dividing cell types in the SVZ [Ponti et al. 2013]. Therefore, the majority of cells labeled with BrdU shortly (2 h) after its administration are considered as TAPs and NBs. We found that >50% of short-term BrdU-labeled cells in the dLSVZ and RMS are Gsx2+, consistent with the idea that Gsx2 is expressed in TAPs [Fig. 2G–G′; Supplemental Fig. 2H]. On the other hand, when cells are exposed to BrdU for an extended period and subsequently left unlabeled long enough (3 and 4 wk, respectively), NSCs, but not TAPs or NBs, are thought to be the predominant cell type among BrdU label-retaining cells [LRCs] [Maslov et al. 2004]. Given that the transition between qNSCs and aNSCs could be reversible [Maslov et al. 2004; Basak et al. 2012], some of these BrdU-LRCs may also include qNSCs at the time of analysis. We found that Gsx2 expression was detected in a significant fraction of BrdU-LRCs (50% and 27% in the dLSVZ and RMS, respectively), indicating that Gsx2 is expressed in aNSCs and/or qNSCs [Fig. 2H–H′; Supplemental Fig. 2H]. In line with this idea, ~14% of Gsx2+ cells expressed both GFAP and EGFR (GFAP+/EGFR+), and a smaller fraction (9%) were GFAP−/EGFR−, consistent with the marker expression in aNSCs and qNSCs, respectively [Fig. 2F–F3; Supplemental Fig. 2I; Pastrana et al. 2009]. Similar expression patterns were found in the RMS [Supplemental Fig. 2A–H]. These data demonstrate that Gsx2 is one of the earliest genes expressed during the lineage progression of NSCs, coinciding with or slightly preceding Ascl1 and EGFR, two known markers for aNSCs and TAPs. However, a large fraction of Ascl1+ and Dlx2+ cells are negative for Gsx2 (66% and 78%, respectively), indicating that Gsx2 expression is transient and down-regulated when cells further proceed to Dlx2+ TAPs and NBs [summarized in Fig. 2L]. It is also possible, however, that some TAPs derive from Gsx2-nonexpressing cells.
cells, demonstrating regionally unbiased recombination [Supplemental Fig. 3B–G]. Although no significant differences were found at D9, the number of Gsx2+ cells in the dlSVZ markedly decreased at D56 in cKO mice compared with control (85% and 57% reductions in the anterior and posterior SVZs, respectively) (Fig. 3A–C). A smaller but significant decrease (43%) was also observed in the RMS (Fig. 3D,E). We assume that this delayed reduction of Gsx2+ cells is because of the extremely slow turnover of GLAST+ adult NSCs (Doetsch et al. 1999).

Nevertheless, once Gsx2 inactivation reached a significant level, it resulted in a severe reduction of neurogenesis in the dlSVZ. Ascl1+, Ki67+, and Dlx2+ cells were substantially reduced in Gsx2 cKO mice, demonstrating that the production of TAPs and NBs are attenuated [Fig. 3F–I]. Importantly, such changes selectively occurred in the dlSVZ but not in other SVZ subregions, indicating that Gsx2 is a region-specific regulator of neurogenesis (Fig. 3J). Smaller yet significant reductions of TAPs and NBs were also detected in the RMS (Supplemental Fig. 3H–I). The smaller impact of Gsx2 inactivation in the RMS is probably because Gsx2 is inactivated only partially in the RMS, and, moreover, NBs produced in all SVZ subregions converge in this region en route to the OB. In contrast, control and cKO mice showed no significant difference in the number of Olig2+ cells in the dlSVZ or the percentage of Olig2+ cells among GFP+ progeny in

Figure 2. Expression of Gsx2 in NSCs and TAPs. (A–H) Representative images of the dlSVZ costained for Gsx2 and a series of cell type-specific markers. C–E are imaged from Gsx2GFP-KI/+ mice. Gsx2 and Gsx2-GFP are expressed in a subset of GFAP+/Ki67+ [C], Ascl1+ [D], and Dlx2+ [E] NSCs and TAPs but not in Dcx+ NBs [B] [higher-magnification views are in the insets in C–E]. [F–I] Confocal images of Gsx2+ cells corresponding to a GFAP+/EGFP+ qNSC [F1], GFAP+/EGFR+ aNSC [F2], and GFAP+/EGFR+ TAP [F3]. [G–H] Gsx2+ cells colabeled with BrdU [arrowheads] after short-term [G–G’] and long-term [H–H’] labeling. [I–K] Gsx2+ cells in neurospheres derived from the adult SVZ. Coexpression of Gsx2 and Sox2. (I’–I’’), Gsx2-GFP and Sox2 (J’–J’’), and Pax6-GFP and Gsx2 (K’–K’’) (arrowheads) are detected in neurospheres. (L) Schematic representations of the expression of Gsx2 and other markers in the stem cell lineage. Bars: C–E, 100 μm; A, B, G–G’, H–H’, I–K’, insets in C–E, 20 μm; F1–F3, 10 μm; G’, 5 μm.
Figure 3. Conditional inactivation of Gsx2 leads to region-specific attenuation of neurogenesis. (A–E) Time-dependent loss of Gsx2+ cells in the dSVZ [A–C] and RMS [D,E] in Gsx2 cKO mice. The number of Gsx2+ cells in the anterior [a] and posterior [p] parts of the SVZ [C] and RMS [E] is compared between Gsx2 cKO and control mice at D9, D56, and D182. [F–L] Region-specific attenuation of neurogenesis following inactivation of Gsx2. Ki67+, Dlx2+, and Ascl1+ TAPs and NBs markedly decrease in the dSVZ [F–J] but not in the ISVZ or vSVZ [J] of Gsx2 cKO mice at D56. Olig2+ cells [I] and BrdU-LRCs [K–L] remain unchanged. To detect LRCs, animals were treated with BrdU for 3 wk and subsequently left untreated for 4 wk before analysis. [M–R] Decrease of Sp8+ and Pax6+ cells in the dSVZ [M–O] and RMS [P–R] in Gsx2 cKO mice. Note that Pax6+ cells remain in the dSVZ in the mutant. Data are expressed as mean ± SEM of three animals. (*) P < 0.05 compared with control animals. Bars: A–B, 9 μm; D, D9, 20 μm.
the OB, suggesting that gliogenesis is not affected by Gsx2 inactivation [Fig. 3I].

We next asked at which step neurogenesis is blocked by Gsx2 inactivation. We observed a substantial decrease of both Ki67+ and Ascl1+ cells, suggesting that the production of TAPs is blocked in the mutant [Fig. 3H,I]. However, the density of BrdU-LRCS in the dLSVZ was indistinguishable between control and cKO mice both 10 and 26 wk after Tx treatment [Fig. 3K–L]. We did not detect significant differences in the percentages of GFAP+/EGFRqNSCs and GFAP+/EGFRqNSCs among GFP+ cells between control and Gsx2 cKO mice at D56 either [data not shown]. These results support the idea that the NSC pool [qNSCs and aNSCs] is preserved in the mutant dLSVZ. Nevertheless, we did not detect any significant recovery of Gsx2+ cells or the overall neurogenic activity 26 wk after Gsx2 inactivation [Fig. 3C]. Thus, unlike in other organs or tissues, where expansion of neighboring or remaining stem cells occurs following a focal loss of stem cells [Simons and Clevers 2011], it appears that few remaining Gsx2+ or Gsx2-nonexpressing NSCs undergo compensatory proliferation and recover the stem cell activity in the defective niche as previously observed for Shh signaling-deficient NSCs [Balordi and Fishell 2007]. Together, these results demonstrate that Gsx2 plays an essential role in the lineage progression from aNSCs to TAPs in a subset of NSCs [see Fig. 5R, below].

We next examined whether the regional identity of NSCs is compromised in Gsx2 cKO mice. We found a marked reduction of Sp8+ and Pax6+ cells in the dLSVZ of Gsx2 cKO mice, although Pax6+ cells in the dorsal roof region remained unaffected [Fig. 3M–O]. We also detected a large reduction of Sp8+ cells [45% of control] in the RMS, whereas Pax6+ cells were mostly spared [83% of control] [Fig. 3P–R]. Thus, the generation of Sp8+ NBs appears to strongly depend on Gsx2 in both the SVZ and RMS, but Pax6+ cells depend on Gsx2 only in the dLSVZ. Moreover, cells detected with the pan-Gsx antibody diminished in the dLSVZ but remained unchanged in other regions in the mutant, indicating no compensatory dorsal expansion of ventrally located Gsx1+ cells [Supplemental Fig. 3J–K'], unlike in Gsx2 mutant embryos [Toresson and Campbell 2001; Yun et al. 2003]. The ventrally restricted expression of Nkx2.1 was also indistinguishable between Gsx2 cKO and control mice [Supplemental Fig. 5L,L']. These results support the idea that inactivation of Gsx2 does not alter the regional identity of NSCs in the dLSVZ or lead to compensatory expansion of adjacent SVZ subdomains.

Gsx2 is required for production of selective subsets of OB neurons

We next examined the impact of Gsx2 inactivation on the specification of OB neuron subtypes. In both Gsx2 cKO and control mice, the progeny of recombinated NSCs are genetically labeled as GFP+ cells so that the fate of OB neurons that are generated after Tx treatment can be tracked. Therefore, neuronal subtypes that have smaller representations among the total GFP+ neurons in the Gsx2 cKO OB compared with the control should be considered Gsx2-dependent.

First, we examined the laminar distribution of GFP-labeled new neurons in the OB at D56. In both control and cKO mice, GFP+ cells were found in multiple layers, including the glomerular layer (GL), the external and internal plexiform layers [herein collectively called the intermediate layer [IL], and the granule cell layer (GCL) [Fig. 4A]. Although resident GLAST+ astrocytes were also labeled as GFP+ cells in these mice, such glial cells were easily distinguishable from GFP+ neurons by their morphology and the lack of coexpression of Dlx2, a common marker for OB interneurons [Fig. 4B]. In control mice, ~70% of GFP+ neurons were found in the GCL, and a disproportionately larger fraction of them [50%] resided in its deeper one-third [dGCL], consistent with the distribution pattern of adult-born neurons [Fig. 4K; Lemasson et al. 2005]. We detected no noticeable differences in the laminar distribution patterns between cKO and control mice. However, a significantly smaller fraction of GFP+ GCL neurons expressed Mef2c [Lyons et al. 1995] in the cKO mice, and such a reduction was more pronounced in the dGCL [Fig. 4C,L]. These results demonstrate that Gsx2 is required for the proper production of a selective subset of Mef2c+ GCL neurons.

We next examined the GL where a greater variety of neuronal subtypes can be identified with a set of markers [Fig. 4D–H]. Previous studies have shown that cells expressing calretinin [CR], neurocalcin [NC], calbindin [CB], tyrosine hydroxylase [TH], and parvalbumin (PV) represent discrete interneuron populations, except for a partial overlap between CR+ and NC+ cells [Brinon et al. 1999; Parrish-Aungst et al. 2007]. Among total GFP-labeled GL neurons, a much smaller percentage of GFP+ neurons expressed CR, NC, and CB in Gsx2 cKO mice than in the control, whereas the proportions of TH+ and PV+ neurons remained unchanged [Fig. 4M]. Moreover, Sp8+ cells, which overlap with CR+ and NC+ neurons in the GL [Waclaw et al. 2006; data not shown], were much less represented in GFP+ neurons, whereas Pax6+ neurons were unaffected in cKO mice [Fig. 4I,J,M]. As a result, a larger fraction of GFP-labeled adult-born neurons remained negative for all of these markers, raising the possibility that many GL neurons that normally differentiate into CR+, CB+, and NC+ neurons either fail to differentiate or transform into currently unidentified neuronal subtypes. Tbr1+ and Tbr2+ glutamatergic interneurons [Brill et al. 2009] were barely (<0.1%) labeled with GFP in control mice and were not apparently affected in Gsx2 cKO mice [data not shown].
CreER-LoxP and tetO-tTA transgenic systems by generating TetO-Gsx2-IRES-EGFP;GLAST-CreER, ROSA-LNL-tTA mice (hereafter called Gsx2 GOF mice) and those carrying TetO-IRES-EGFP (control mice). In these mice, Tx induces the expression of the TetO promoter trans-activator (tTA) in GLAST\(^+\)SVZ stem cells by removing a stop cassette from tTA transgene knocked into the ROSA26 locus (ROSA-LNL-tTA) (Wang et al. 2008). This tTA subsequently activates the TetO promoter-driven expression of Gsx2 and GFP in Gsx2 GOF mice and GFP alone in control mice (Waclaw et al. 2009). Thus, once induced by Tx, Gsx2 and GFP are constitutively expressed in NSCs and their progeny. Moreover, the activation of the TetO transgenes can be subsequently shut off by administering doxycycline (Dox), a suppressor of tTA, to the animals.

As shown in Figure 5, A–C, Tx-treated Gsx2 GOF mice robustly overexpressed Gsx2 in the SVZ. We detected more Gsx2\(^+\) cells and a higher level of Gsx2 protein expression in each cell in its normal expression domain as well as in ectopic locations all around the LV. In control animals, however, the dLSVZ-restricted expression of Gsx2 remains unchanged [Supplemental Fig. 4A,A'], and many GFP-labeled, Dlx2\(^+\) neurons reached the OB by D63 [Fig. 5L]. Contrary to our expectation, most GFP\(^+\) cells in the OB of Gsx2 GOF mice were astrocytes, and few GFP\(^+\)/Dlx2\(^+\) new neurons were detected [Fig. 5M,Q]. Few activated caspase-3\(^+\) cells were detected anywhere along the OB–RMS–SVZ axis, and no ectopic GFP-labeled neurons were found outside these neurogenic regions, indicating that aberrant cell death or ectopic migration does not account for the absence of new GFP\(^+\) neurons in Gsx2 GOF mice (data not shown).

We then examined the impact of Gsx2 overexpression on NSCs. In control animals, the production of new neurons by recombined NSCs reached a steady-state level by D63 so that GFP labeling covers the entire lineage from GLAST\(^+\) stem cells to differentiating NBs. Under this condition, the expression of Nkx2.1 and Pbx3a in the lSVZ and vSVZ was indistinguishable between Gsx2 GOF mice and control mice [Supplemental Fig. 4J–K']. Thus, we did not find any indication that ectopic Gsx2 alters the regional identity of stem cells outside its normal expression domain. We found, however, that much smaller fractions of GFP\(^+\) cells express Ki67, Ascl1, and Dlx2 in Gsx2 GOF mice [Fig. 5D]. Instead, GFAP\(^+\)/EGFR\(^+\) aNSCs...
Figure 5. Gsx2 overexpression promotes transition from qNSCs to aNSCs. (A–C) Ectopic expression of Gsx2 in the SVZ of Gsx2 GOF mice at D56. Arrows and arrowheads indicate endogenous and ectopic Gsx2+ cells, respectively. (C) Percentage of Gsx2+ cells among GFP+ cells in Gsx2 GOF and control mice at D56. (D–I) TAPs and NBs decrease and aNSCs accumulate in Gsx2 GOF mice. (E,G) Representative images of a GFP-labeled GFAP+/EGFR+ aNSC (arrowheads; E) and a BrdU-LRC (G) in Gsx2 GOF mice. (F) Percentages of GFAP+/EGFR+ aNSCs and GFAP+/EGFR+ TAPs among GFP+ cells at D56. (H,I) Relative number of LRCs (H) and their percentage among GFP+ cells (I) in the SVZ. BrdU was administered for 3 wk following overexpression of Gsx2 for 4 wk and was subsequently chased for additional 4 wk. (J,K) Gsx2 promotes proliferation of neocortical astrocytes. (J) Representative image of a BrdU+/GFP+ cortical astrocyte in Gsx2 GOF mice. (K) Percentage of BrdU+ cells among GFP+ cells in the neocortex (Cx). BrdU labeling was performed as described in H and I. (L–O) Inhibition of neurogenesis and its Dox-dependent restoration in Gsx2 GOF mice. GFP+/Dlx2+ OB neurons are detected in control mice under both Dox-untreated (L) and Dox-treated (N) conditions at D91, whereas such cells are much fewer in untreated Gsx2 GOF mice (M) and are partially restored by Dox treatment (O). (P,Q) The percentage of Dlx2+ cells among GFP+ cells in the SVZ (P) and GL, GCL, and total OB (Q) of Dox-treated and untreated animals. (R) A model for the action of Gsx2 in lineage progression of NSCs (left) and a summary of the phenotypes of Gsx2 cKO and GOF mice (right). Vertical lines and thick arrows indicate blockage and promotion, respectively. Data are expressed as mean ± SEM of three animals. P < 0.05 compared with control (*) or Dox-untreated ($) animals. Bars: A, A', L–O, 100 μm; B, B', E, insets in L–O, 20 μm; G, J, 10 μm.
were highly enriched among GFP+ cells (Fig. 5N–Q). We also detected GFP+ cells (Pastrana et al. 2009; Beckervordersandforth et al. 2010), although they share many features with SVZ stem cells (Mori et al. 2006). Astrocytes outside the neurogenic niche (Mirzadeh et al. 2008; Kokovay et al. 2012). Recent studies have uncovered the unique cytoarchitecture of the SVZ stem cell niche, in which NSCs maintain close contacts with both the ependymal layer (EPL) on the apical side and a vascular network embedded in the underlying SVZ on the basal side (Fuentetalba et al. 2012). To reveal the role of Gsx2 in such niche–stem cell interactions, we obtained whole-mount preparations of the lateral wall of the LV from Gsx2 GOF and control mice and examined the behavior of GFP-labeled stem cell lineage cells in en face views of the niche (Fig. 6A). In control animals, the vast majority of GFP+/Ki67+ dividing cells formed tightly packed clusters around the SVZ vasculature, as described previously (Fig. 6B–B'; Shen et al. 2008; Tavazoie et al. 2008). In contrast, such cells were scarce and more scattered in Gsx2 GOF mice (Fig. 6C–C'). Moreover, the soma of GFP+/Ki67+ cells in Gsx2 GOF mice were often distant from the vascular network yet maintained contacts with nearby blood vessels by extending long processes (Fig. 6C–D; Supplemental Movies S1, S2). These cells were reminiscent of ventricle-contacting apical stem cells described in previous studies (Mirzadeh et al. 2008; Kokovay et al. 2012).

We next examined the exact location of individual GFP+/Ki67+ cells along the apicobasal axis of the niche in a series of high-power z-stack images. Staining of adherens junctions with β-catenin (β-cat) antibody reveals the surface of the EPL and its honeycomb-like epithelial organization (Fig. 6E–F'; Supplemental Fig. 5). High-power views further show that the soma and short processes of apical GFP+ cells are intercalated between ependymal cells (Fig. 6G–H', arrowheads and asterisks) and express GFAP (Fig. 6I,J). In control mice, these apically located cells represented about one-third (32.8%) of total GFP+ cells, whereas the majority of them were located in the more basal SVZ region (Fig. 6C', K, arrows). Moreover, only a small fraction of these apical cells were Ki67+, reflecting infrequent cell divisions of stem cells (Fig. 6G,J). In contrast, as much as 80% of GFP+ cells were apically located in Gsx2 ckO mice, and about one-half of these apical cells were costained for Ki67+ (Fig. 6H', J,K). Given the aforementioned results that Gsx2-overexpressing cells stall at the stage of aNSCs, these apically located dividing cells are likely to correspond to aNSCs, and the blockage of their lineage progression to TAPs correlates with the inhibition of downward translocation of their soma from the EPL to the SVZ along the apicobasal axis.

Gsx2 controls injury-induced neurogenesis

Previous studies have shown that various insults augment production of new neurons in the adult SVZ [Nakafuku and Grande 2013]. The mechanisms underlying such injury-induced responses, however, remain largely unknown. We used two injury paradigms to ask whether Gsx2 plays any role in injury-induced neurogenesis. First, we used H/I injury, which causes broad hemilateral neocortical and striatal damage [Fig. 7A; Adhami et al. 2006]. Surprisingly, H/I not only increased the number of Gsx2+ cells in its normal expression domain, but also induced ectopic Gsx2+ cells in the lateral and ventral regions of the SVZ 7 d after injury (Fig. 7B–D'). A significant increase in Gsx2+ cells was apparent even in the contralateral hemisphere compared with uninjured animals, but much stronger induction was detected in the ipsilateral SVZ (Fig. 7D). Accompa-
neying this Gsx2 up-regulation, Ki67+ proliferative cells, Ascl1+ TAPs, and Dlx2+ NBs all increased in broad SVZ regions after H/I (Fig. 7E–G).

Similar induction of Gsx2 was observed following more localized brain injury. Stereotaxic injection of a small amount of the glutamate receptor agonist quinolinic acid (QA) into the striatum causes focal excitotoxic neuronal loss (Fig. 7H; Hansson et al. 1999). We compared the expression of Gsx2 and the level of neurogenesis between ipsilateral and contralateral SVZs after hemilateral QA injury. To reveal the role of Gsx2 in injury responses, we performed the same analyses using Gsx2 cKO and control mice. Like in the H/I model, we detected a significant increase of Gsx2+ cells in the ipsilateral SVZ compared with the contralateral side, and such an increase occurred not only in the dlSVZ, but also in the lateral and ventral regions (Fig. 7I). This ectopic induction of Gsx2 accompanied increased production of new neurons in the SVZ as revealed by the up-regulation of Ki67+, Ascl1+, and Dlx2+ cells in control animals (Fig. 7I). Moreover, ectopic Sp8+...
cells, which are normally produced by Gsx2+ NSCs in the dISVZ, were detected in the lSVZ and vSVZ (Fig. 7J). Importantly, such injury-induced responses were almost completely abolished in Gsx2 cKO mice (Fig. 7J). It is particularly noteworthy that the up-regulation of neurogenesis was halted not only in the normal Gsx2-expressing region (dISVZ), but also in its ectopic expression sites (lISVZ and vSVZ). This is surprising given the fact that inactivation of Gsx2 does not affect the baseline neurogenesis in these regions in the intact brain. These results demonstrate that Gsx2 is not only required for continuous neurogenesis in a specific subregion of the SVZ in the intact brain, but is also essential for injury-induced neurogenesis in broader SVZ regions after insult.

Discussion

Regional heterogeneity of adult NSCs

Recent studies have demonstrated that adult NSCs are regionally heterogeneous (Lledo et al. 2008 and references therein). Details of such heterogeneity, however, remain poorly understood. This study provides new insights into this issue and highlights similarities and differences...
between embryonic and adult NSCs. During embryogenesis, Gsx2 expression becomes refined to a high dorsal-low ventral gradient within the lateral ganglionic eminence (LGE) at late embryonic stages. The high-Gsx-expressing region defines the dLGE that serves as a major source of embryonically generated OB interneurons [Yun et al. 2001; Stenman et al. 2003; Waclaw et al. 2009]. Similarly, the adult expression of Gsx2 is mostly confined to the dLSVZ and plays an essential role in proper OB neurogenesis in this region. These similarities support the idea that the embryonic dLGE is the origin of the dLSVZ in adults. In fact, a recent lineage tracing study has shown that this adult region contains progeny of embryonic Gsx2\(^+\) progenitors [Young et al. 2007]. Moreover, the adult Gsx2\(^+\) domain is flanked by Pax6\(^+\) cells dorsally and Gsx1\(^+\) and Nkx2.1\(^+\) cells ventrally, and a similar topological organization of germinal zones has been reported in the developing telencephalon [Stenman et al. 2003; Waclaw et al. 2006, 2009], supporting the idea that the DV organization of progenitor domains is preserved between embryos and adults.

Nevertheless, this study has also revealed a clear difference between embryonic and adult NSCs. During development, the positional identity of progenitors is established through cross-suppression between region-specific factors, and therefore, inactivation of one of these factors often results in the expansion of adjacent domains [Puelles and Rubenstein 2003]. For instance, in the telencephalon of Gsx2\(^{+}\) KO embryos, the Pax6\(^+\) dorsal domain expands ventrally, and the Gsx1\(^+\) ventral domain invades dorsally into the normally Gsx2\(^+\) domain [Toresson et al. 2000; Toresson and Campbell 2001; Yun et al. 2001, 2003]. However, we did not find evidence for such misspecification in adult Gsx2\(^{+}\) cKO or GOF mice. It could be that once the regional specificity is established during embryogenesis, the identities of distinct NSC groups are maintained independently from each other at the adult stage. Alternatively, the local environment plays a predominant role in maintaining the stem cell identity. In fact, a recent study has proposed that Shh signals play a role in specifying NSCs in the vSVZ [Ihrle et al. 2011]. Our data using GlI1-nLacZ mice, however, suggest that Gsx2 is not under the direct influence of Shh signals in the dLSVZ and that ectopic Gsx2 does not override the specificity of vSVZ stem cells.

NSCs and OB interneuron diversity

Adult inactivation of Gsx2 selectively attenuates the production of CR\(^+\), NC\(^+\), and CB\(^+\) interneurons in the GL and MeZ\(^+\) cells in the GCL of the OB. In parallel, we detected a marked reduction of Sp\(^\#\) cells in the SVZ, RMS, and OB, which is essential for proper differentiation of CR\(^+\) GL neurons in embryos [Waclaw et al. 2006]. Thus, Sp\(^\#\) appears to be a crucial downstream target of Gsx2 in producing CR\(^+\) GL neurons in the adult brain. Whether the reduced Sp\(^\#\) cell number also accounts for the reduction of other adult-born neuronal subtypes in the cKO mice remains to be determined. Pax6, which is required for differentiation of TH\(^+\) neurons in the GL and granule cells in the superficial GCL [Hack et al. 2005, Kohwi et al. 2005], is also attenuated in the dLSVZ but not in the RMS or OB, and we detected no apparent change in the production of these neuronal subtypes in Gsx2 cKO mice.

Previous studies have provided a link between the anatomical location of NSCs and the subtype specificity of their neuronal progeny in the early postnatal brain [Lledo et al. 2008]. Given the regionally restricted expression of Gsx2, the above results suggest that Gsx2\(^{+}\) NSCs in the dLSVZ and RMS are the major source of the neuronal subtypes lost in the cKO mice. However, we detected an incomplete loss of these neuronal subtypes in the mutant. A likely explanation for this is that inactivation of Gsx2 was incomplete, in particular, in the RMS in the mutant. Another possibility is that non-Gsx2\(^{+}\) NSCs in other regions also contribute to their production. In fact, the correlation between the location of NSCs and the subtype specificity of their progeny appears not to be strict; NSCs located at a particular region generate more than one neuronal subtype, and those in different regions produce overlapping subtypes [Merkle et al. 2007]. Perhaps molecular markers currently available do not fully distinguish all OB neuronal subtypes, and Gsx2\(^{+}\) NSC-derived neurons represent only a specific subset. Alternatively, NSCs residing in a given SVZ region could be heterogeneous, and Gsx2\(^{+}\) NSCs coexist with other stem cell subtypes in the same region.

Mobilization and lineage progression of adult NSCs

Many molecules act as common regulators of stem/progenitor cells in embryos and adults [Ninkovic and Götz 2007]. However, the long-term maintenance of quiescent and slowly cycling stem cells and their progression to actively proliferating TAPs are unique to adult NSCs. Our data have demonstrated that Gsx2 plays a crucial role in these adult-specific regulatory steps. Gsx2 is expressed in aNSCs and TAPs and is subsequently down-regulated, while cells further progress toward NBs. Both inactivation and constitutive overexpression of Gsx2 block the transition from aNSCs to TAPs, suggesting that the temporally controlled induction and down-regulation of Gsx2 is important for proper lineage progression of adult NSCs. In this regard, Gsx2 can be considered as a gatekeeper that controls the tempo of adult neurogenesis. We also found that overexpression of Gsx2 promotes the mobilization of qNSCs toward aNSCs and expands the stem cell pool. However, we did not detect a significant reduction of NSCs in Gsx2 cKO mice, suggesting that other molecules also play a redundant role in regulating this step.

Recent studies have revealed that the maintenance and activity of adult NSCs is tightly controlled by signals from their niche [Fuentesalba et al. 2012; Song et al. 2012]. However, cell-intrinsic regulators that operate downstream from such niche signals are not well understood. Our data suggest that Gsx2 acts as such a cell-intrinsic regulator in a subset of stem cells. In Gsx2 GOF mice, aNSCs accumulate in the EPL, the apical niche, yet actively divide at locations away from the basal vascular...
niche. Such cell divisions distant from the vasculature, however, are much less frequent in control animals. Thus, we speculate that one of the roles of vascular niche signals is to turn on Gsx2 or its equivalents in quiescent stem cells and initiate their mobilization.

Importantly, Gsx2 exerts such a function only in a restricted subset of NSCs. Thus, this study has uncovered a previously unrecognized mode of regulation of adult NSCs, distinct molecules mobilize stem cells toward neurogenesis in different regions. We speculate that other molecules play a similar role in other NSC populations and that Gsx1, a close homolog of Gsx2, is a likely candidate in the lSVZ and vSVZ. Interestingly, downstream from these region-specific regulators, some common mechanisms operate across stem cell niches. The bHLH factor Ascl1 and the homeodomain factor Dlx2 are commonly expressed in TAPs and NBs, respectively, throughout SVZ subregions and play important roles in the production of new neurons [Brill et al. 2008; Kim et al. 2011; A López-Juárez and M Nakafuku, unpubl.]. Our data place Gsx2 as an upstream regulator of these factors selectively in the dSVZ. This two-step regulatory mechanism could explain, at least in part, how distinct adult NSC pools as a whole generate a diverse array of OB neurons that share many common features yet exhibit distinct phenotypes.

Mechanisms for injury-induced neurogenesis

A variety of insults, including ischemia, trauma, excitotoxicity, and neurodegeneration, stimulate neurogenesis in the adult brain [Nakafuku and Grande 2013]. The mechanisms underlying such injury-induced neurogenesis, however, remain largely unknown. We identified Gsx2 as a crucial regulator of such regenerative responses. In particular, our studies have revealed two previously unrecognized features of neurogenesis after injury. First, both H/I and QA injury up-regulate Gsx2 not only in its normal expression domain, but also in much broader SVZ subregions. Thus, injury does not simply raise the level of activity of endogenous NSCs but rather modulates their molecular features in a unique way. Second, inactivation of Gsx2 abrogates injury-induced neurogenesis throughout the SVZ, indicating that ectopically expressed Gsx2 is essential for injury-induced responses even in regions that do not normally depend on Gsx2. It remains unknown why other molecules that control continuous neurogenesis in these normally Gsx2-negative domains are insufficient for injury responses. These unexpected findings have revealed that distinct mechanisms control neurogenesis in intact and injured brains. A recent study using zebrafish has shown that injury-induced GATA3 plays a crucial role in regenerating neurons lost to insult [Kizil et al. 2012]. A similarity between GATA3 in zebrafish and Gsx2 in mice is that both are broadly up-regulated by injury and are essential for stimulation of neurogenesis. An important difference, however, is that Gsx2 is expressed in a subset of stem cells in the intact brain, whereas GATA3 expression appears to be specific to injured brains.

Our finding also provides new insights into the plasticity of adult NSCs. The fact that injury induces ectopic expression of Gsx2 in normally nonexpressing regions raises the possibility that injury alters the regional specificity of NSCs. This idea is particularly intriguing in light of the previous finding that in response to various insults, the adult SVZ not only generates more OB neurons, but also produces new neurons that migrate toward lesion sites outside the normal neurogenic niches, and these new neurons exhibit region-appropriate phenotypes [Nakafuku and Grande 2013]. If NSCs normally committed to the generation of OB neurons are responsible for the production of such non-OB neurons after injury, it likely occurs through respecification of their identity, and ectopic expression of Gsx2 in response to injury could be part of such respecification. Alternatively, injury-induced Gsx2 may mobilize NSCs that otherwise remain dormant and do not participate in OB neurogenesis in the intact brain to produce new neurons in damaged regions. Further studies on the role of Gsx2 in damaged brains will contribute to future development of strategies to augment endogenous regenerative capacities toward better recovery and repair after injury.

Materials and methods

Animals

All procedures were performed using young adult animals at the age of 8–12 wk according to the guidelines of the National Institutes of Health and the Institutional Animal Care and Use Committee. Details of the source of animals and the breeding and handling procedures are described in the Supplemental Material.

Injury models

Unilateral H/I injury was performed as described previously [Adhami et al. 2006]. Procedures for focal striatal injury with QA followed a method described previously [Hansson et al. 1999]. Details are described in the Supplemental Material.

Histology

For immunostaining, 12-μm-thick cryosections or 25-μm-thick vibratome sections of 4% [v/v] paraformaldehyde-fixed brains were used. Whole-mounts of the lateral wall of the LV were prepared as described previously [Mirzadeh et al. 2010]. The method to identify specific regions of the neurogenic niche and antibodies used for immunostaining is described in the Supplemental Material. Immunoreactive cells were visualized by staining with secondary antibodies conjugated with Alexa Fluor 488, 568, and 647 [Invitrogen]. Fluorescent images were captured by a CCD camera attached to Carl Zeiss Axiophoto II or Apotome. Z-stack images of whole mounts were obtained using Nikon A1R si laser-scanning confocal microscope. The quantitative results are expressed as mean ± standard error of the mean (SEM) of data obtained from three to four mice, and statistical analyses were performed with two-tailed unpaired t-test.

Acknowledgments

We are grateful to Magdalena Götz, Jane Johnson, Martyn Goulding, and Kazuaki Yoshikawa for reagents; Matthew Kofron...
for technical support for imaging; and Anna Nelke, Felicia Rinaldi, Rohit Rao, and Christine Marques for participation in an initial phase of the project. This study is supported by NIH/NINDS R01NS069893 to M.N. and K.C., NIH/NINDS R01NS044080 to K.C., Ohio Eminent Scholar Fund from the State of Ohio to M.N., and CONACYT162786 to A.L.J.

References

Gsx2 controls region-specific activation of neural stem cells and injury-induced neurogenesis in the adult subventricular zone

Alejandro López-Juárez, Jennifer Howard, Kristy Ullom, et al.

Genes Dev. published online May 30, 2013
Access the most recent version at doi:10.1101/gad.217539.113

Supplemental Material
http://genesdev.cshlp.org/content/suppl/2013/05/29/gad.217539.113.DC1.html

Published online May 30, 2013 in advance of the print journal.

Email Alerting Service
Receive free email alerts when new articles cite this article - sign up in the box at the top right corner of the article or click here.

To subscribe to Genes & Development go to:
http://genesdev.cshlp.org/subscriptions

Copyright © 2013 by Cold Spring Harbor Laboratory Press