PCR Primer: A Laboratory Manual

Edited by Carl Dieffenbach, National Institute of Allergy and Infectious Diseases, Gabriela Devksler, Uniformed Services University of the Health Sciences

From its first-published account in 1985, the polymerase chain reaction has become a standard research tool in a wide range of laboratories. Its impact has been felt in basic molecular biological research, clinical research, forensics, evolutionary studies, and the Human Genome Project. The PCR technique originally conceived by Nobel laureate Kary Mullis has proven to be exceptionally adaptable and has been transformed into a myriad array of methods, each with different applications.

PCR Primer: A Laboratory Manual introduces the complex world of PCR by beginning at an accessible level and then moving to more advanced levels of application. First, the practical requirements for performing PCR and other amplification techniques in the lab are introduced and then the basic aspects of the technique are explained by exploring important issues such as sample preparation, primer design, efficiency, detection of products, and quantitation. Protocols for a wide range of PCR and amplification techniques—each written by an expert investigator—are presented for cloning, sequencing, mutagenesis, library construction and screening, exon trapping, differential display, and expression, and these include RT-PCR, RNA PCR, LCR, multiplex PCR, panhandle PCR, capture PCR, expression PCR, 3' and 5' RACE, in situ PCR, and ligation-mediated PCR. Each protocol is augmented by analysis and troubleshooting sections and complete references.

CONTENTS

Introduction to PCR
Setting Up a PCR Laboratory (C.W. Dieffenbach et al.); A Standard PCR Protocol: Rapid Isolation of DNA and PCR Assay for β-Globin (M.T. Vahey et al.); Enzymatic Control of Carvery Contamination in PCR (J.L. Hartley, A. Rashbashian); Ultraviolet Irradiation of Surfaces to Reduce PCR Contamination (B.W. Cone, M.R. Fairfield); Specificity, Efficiency, and Fidelity of the PCR (R.S. Cha, W.G. Thilly); Optimization and Troubleshooting in PCR (K.H. Roux); Long-Distance PCR (O.S. Foord, E.A. Rose)

Sample Preparation
Rapid Preparation of DNA for PCR Amplification with Gene Releasetm (E.P. Dawson et al.); PCR Amplification from Paraffin-embedded Tissues: Sample Preparation and the Effects of Fixation (C.E. Greer et al.); RNA Purification (J.J. Adamovicz, W.C. Gause)

Primer Design
General Concepts for PCR Primer Design (C.W. Dieffenbach et al.); Design and Use of Mismatched and Degenerate Primers (S. Kwok et al.); Multiplex PCR (M.C. Edwards, R.A. Gibbs)

Detection of PCR Products: Quantitation and Analysis
Immunodetection of PCR Products (J.G. Lazar); Quantitative PCR Using the AmpliSensor Assay (C.N. Wang); DNA Fingerprinting Using Arbitrarily Primed PCR (M. McClelland, J. Welsh); RNA Fingerprinting Using Arbitrarily Primed PCR (M. McClelland, J. Welsh); In Situ PCR (G.J. Nuovo); Single-strand Conformational Polymorphism (K. Fujita, J. Silver); Genetic Subtyping of Human Immunodeficiency Virus Using a Heteroduplex Mobility Assay (E.L. Delwalt et al.); Sensitive and Fast Mutation Detection by Solid-phase Chemical Cleavage (L.L. Hansen et al.)

PCR Starting from RNA
Use of the PCR to Quantitate Relative Differences in Gene Expression (W.C. Gause, J.J. Adamovicz); Quantitative Liquid Hybridization PCR Method Employing Storage Phosphor Technology (M.T. Vahey, M.T. Wong); Use of the Snape Assay to Quantitate Allele-specific Sequences Differing by a Single Nucleotide (J. Singer-Sam); Trapping Internal and 3'-Terminal Exons (P.E. Nisson et al.); Expression-PCR (D.E. Lanar, K.C. Kain)

PCR-mediated Cloning
Rapid Amplification of cDNA Ends (M.A. Frohman); Panhandle PCR (D.H. Jones); Detection and Identification of Expressed Genes by Differential Display (P. Warthe et al.); Construction of Subtractive cDNA Libraries Using Magnetic Beads and PCR (A. Lonneborg); PCR-based Method for Screening DNA Libraries (D.I. Israel); Screening of YAC Libraries with Robotic Support (M.M. Blanchard, V. Nowotny); Phagemid Display Libraries Derived from PCR-immortalized Rearranged Immunoglobulin Genes (H.H. Hogrefe, B. Shopes)

PCR Sequencing
Direct Sequencing of PCR-amplified DNA (V.B. Rao); Cycle Sequencing (K. Kretz et al.)

Cloning of PCR Products
Strategies for Cloning PCR Products (R. Levis); Cloning and Analysis of PCR-generated Fragments (G.L. Costa, M.P. Weiner)

Mutagenesis by PCR
Mutagenic PCR (R.C. Cadwell, G.F. Joyce); PCR Mutagenesis and Recombination In Vivo (D.H. Jones); Mutagenesis and Synthesis of Novel Recombinant Genes Using PCR (A.N. Vallejo et al.); Rapid PCR Site-directed Mutagenesis (M.P. Weiner, G.L. Costa)

Alternative Amplification Technologies
Ligase Chain Reaction (M. Weidmann et al.); Optimization and Characterization of JSR-based Assays (E.R. Gingeras et al.); Oligonucleotide Quantitative HIV-1 RNA NASBA (B. van Gemen et al.)

Appendices
Computer Software for Selecting Primers; Reagents and Equipment

1995, 625 pp. (approx.), illus., appendices, index


Plastic comb binding $95 ISBN 0-87969-448-3
As the pioneer provider of products for apoptosis detection, only Oncor can help you investigate apoptosis so easily, in so many innovative and flexible ways.

**ApopTag™ Plus In Situ Detection Kit**

This is our popular, field-proven ApopTag Kit with the enhancements you’ve requested: control slides, extra reaction buffer, DAB substrate and easy access vials. Able to detect single apoptotic cells, the ApopTag labeling method is superior to in situ polymerase translation in distinguishing apoptosis from necrosis. ApopTag Plus is available in peroxidase and fluorescein versions.

**Image Analysis System** With user-friendly apoptosis software, our true color image analysis system counts total number of cells, separates positive from negative and provides a labeling index—in mere moments.

We now offer individual **ApopTag Kit Reagents**, **ApopTag Control Slides** and a variety of **Aptosis-related Monoclonal Antibodies**. These supplemental products will help you adapt our kits to new applications and investigate apoptosis more deeply.

You’ll learn more with a leader by your side. To access apoptosis, call Oncor.

---

For research use only. Not for use in diagnostic procedures. ApopTag™ is a trademark of Oncor, Inc.

1 Gold, R. et al. (1994) Differentiation between Cellular Apoptosis and Necrosis by the Combined Use of In Situ Tailing and Nick Translation Techniques in Lab. Invest. Vol 71: p. 219

Reader Service No. 443