Homotypic and heterotypic protein associations control Rad51 function in double-strand break repair

John W. Donovan, G. Todd Milne, and David T. Weaver

Division of Tumor Immunology, Dana-Farber Cancer Institute, Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115 USA

Rad51 is essential for efficient repair of DNA double-strand breaks (DSBs) and recombination in Saccharomyces cerevisiae. Here, we examine Rad51 protein–protein interactions and their biological significance. GAL4 two-hybrid fusion analysis demonstrated that the amino-terminal region of Rad51 mediates both a strong Rad51:Rad51 self-association and a Rad51:Rad52 interaction. Several Rad51 variants were characterized that imparted DSB repair defects; these defects appear to result from Rad51 protein–protein interactions. First, a radSl allele bearing a missense mutation in the consensus ATP-binding sequence disrupted DSB repair in wild-type yeast. The effect of this allele was dependent on the presence of wild-type Rad51 because MMS sensitivity of radSlA strains were not increased by its expression. Second, we identified a highly conserved RAD51 homolog from Kluyveromyces lactis (K1RAD51) that only partially complemented radSlA strains and impaired DSB repair in wild-type S. cerevisiae. Third, fusions of Gal4 domains to Rad51 disrupted DSB repair in a manner that required the presence of either Rad51 or Rad52. Because K. lactis RAD51 and RAD52 did not complement a S. cerevisiae rad51A rad52A strain, Rad51–Rad52 functions appear to be mediated through additional components. Thus, multiple types of Rad51 protein interactions, including self-association, appear to be important for DSB repair.

[Key Words: RAD51; RAD52; double-strand break repair; self-association; negative dominance]

Received August 5, 1994; revised version accepted September 20, 1994.

The repair of damaged DNA is critical for the faithful transmission of genetic information and the maintenance of genomic stability. In Saccharomyces cerevisiae, nearly 100 loci have been identified that are required for this process. On the basis of double mutant analysis, these loci can be divided into three epistasis groups that control nucleotide excision repair [RAD3 epistasis group], error-prone/post-replication repair [RAD6 epistasis group], and recombinational repair [RAD52 epistasis group; for review, see Game 1983; Friedberg 1991; Petes et al. 1991]. The third class of genes, which include RAD50-57, MRE2, MRE11, and XRS2, is primarily responsible for the repair of DNA double-strand breaks [DSBs]. RAD52 epistasis group mutants exhibit sensitivity to agents that generate DSBs and have pleiotropic defects in mitotic and meiotic recombination.

Rad51 from yeast and other eukaryotes has considerable homology to bacterial RecA (Aboussekhra et al. 1992; Basle et al. 1992; Shinohara et al. 1992; Bezzubova et al. 1993; Morita et al. 1993; Muris et al. 1993; Shinohara et al. 1993; Yoshimura et al. 1993; Jang et al. 1994). Computer modeling indicates that there is significant structural similarity between these proteins as well, suggesting a conserved function in DSB repair [Story et al. 1993]. In Escherichia coli, RecA plays a central role in recombinational DNA repair [for review, see Roca and Cox 1990; Kowalczykowski 1991; Radding 1991]. RecA promotes the pairing and exchange of DNA strands between homologous sequences by forming a helical protein filament that is a product of both RecA–DNA interactions and RecA self-association [Stasiak et al. 1988]. Rad51 also forms a helical filament on double-stranded DNA in vitro (Ogawa et al. 1993). The rad51-10 allele, which is semidominant in a heterozygous diploid, suggests that Rad51, like RecA, self-associates [Aboussekhra et al. 1992]. Additionally, Rad51, like RecA, binds DNA in the presence of ATP and is a DNA-dependent ATPase [Shinohara et al. 1992]. A compelling hypothesis is that Rad51 is also biologically active as a nucleoprotein filament.

The epistatic interactions of RAD52 group genes reflect their function in a common repair pathway. Moreover, there appears to be physical association of at least a subset of the gene products. Genetic and physical evidence for the interaction between Rad52 and Rad51 has been reported [Shinohara et al. 1992; Milne and Weaver 1993]. Additional evidence for a multiprotein repair complex comes from the negative dominance exerted by
Dominant-negative alleles of RAD51

Physical evidence of RecA-like RadSl–DNA filaments (Ogawa et al. 1993) indicates that protein–protein interactions should be important for RadSl function. These RadSl interactions could be revealed by the action of mutant alleles. A chromosomal mutation [K-A191] in the ATP-binding site of RadSl results in a DNA repair and recombination deficiency in mutant yeast (Shinohara et al. 1992). We reasoned that rad51K–A191, although biologically inactive, should retain the capacity for protein–protein interactions and thus may dominantly interfere with DSB repair when expressed in wild-type cells.

To examine the ability of rad51K–A191 to dominantly interfere with DNA repair, we measured the DSB repair phenotypes of wild-type strains expressing this mutant allele. RAD51 and rad51K–A191 alleles were transcribed from the ADH promoter on a 2μ plasmid transformed into a wild-type (DWY83; see Table 1) and a rad51Δ strain (DWY120). Transformants were plated on solid media with and without methyl methane sulfonate (MMS) to measure DSB repair, and surviving colonies were scored over 5 days (see Materials and methods). Transformation of rad51K–A191 failed to complement the MMS sensitivity of the rad51Δ strain. These transformants were indistinguishable from DWY120 transformed with vector alone (Fig. 1A). In contrast, transformation with wild-type RAD51 conferred complete resistance to this concentration of MMS (Fig. 1A).

The DNA repair phenotype of DWY83 (wild type) transformed with RAD51, rad51K–A191, or vector only was also measured on MMS selection plates. DWY83 transformants with vector control or wild-type RAD51 were equally MMS resistant, indicating that RadSl overexpression does not influence DNA repair (Fig. 1B). However, transformation with rad51K–A191 significantly reduced the colony number on MMS plates over 5 days, indicating that repair has been disrupted. Several other haploid and diploid wild-type strains were similarly sensitive to rad51K–A191 expression [data not shown]. Importantly, rad51K–A191 expression had no effect on the repair of UV damage in these cells, demonstrating a selectivity in inhibiting DSB repair [data not shown]. The rad51K–A191 gene product, therefore, clearly has a strong dominant-negative effect on DSB repair when expressed in wild-type cells.

The amino-terminal region of RadSl is important for self-association and interaction with RadSl2

The simplest model that would describe the effect of

Table 1. Yeast strains used in this study

<table>
<thead>
<tr>
<th>Strain</th>
<th>Genotype</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>GGY1:171</td>
<td>MATα, leu2, his3, gal4Δ, gal80Δ, ura3::GAL1–lacZ</td>
<td>Chien et al. [1991]</td>
</tr>
<tr>
<td>DWY83</td>
<td>MATα, arg4-RV, leu2-3,112, cyh6, ura3-52, trp1-189</td>
<td>R. Kolodner, Harvard Medical School, Cambridge, MA</td>
</tr>
<tr>
<td>DWY120</td>
<td>MATα, ho::LYS2, lys2, leu2::hisG, ade2::LK, his4-XB, rad51Δ::hisG, ura3</td>
<td>Milne and Weaver [1993]</td>
</tr>
<tr>
<td>DWY127</td>
<td>MATα, leu2-3,112, trp1-1, can1-100, ura3-1, ade2-1, his3-11,15 [phi+]</td>
<td>R. Rothstein, Columbia University, NY</td>
</tr>
<tr>
<td>DWY129</td>
<td>MATα, rad51::LEU2, can1-100, his3-11,15, leu2-3,112, trp1-1, ura3-1, ade2-1</td>
<td>R. Rothstein, Columbia University, NY</td>
</tr>
<tr>
<td>DWY144</td>
<td>rad51::LEU2, ura3, rad52Δ::ura3, leu2-3,112, his3-11,15</td>
<td>this study</td>
</tr>
</tbody>
</table>
expression on MMS repair is that lacZ reporter gene downstream yeast strain containing a yeast Gal4 protein and these fusions are coexpressed in a and ADH:iad51K-A191 (51; •), (51K-A191; ■) and RAD51 DWY83 AD- was transformed with pDB20 (Vector; O), sensitizes wild-type cells to MMS. Tad51K-A191 (51; •), and H:RAD51 (51K-A191; ▲) and as­

Figure 1. Rad51K-A191 dominantly interferes with DSB re­

over a period of 5 days is shown. [A] Overexpression of rad51K-A191 does not complement the MMS sensitivity of a rad51Δ strain. DWY120 (rad51Δ) was transformed with pDB20 (Vector, ○), ADH:RAD51 [51], and ADH:rad51K-A [51K-A191; ▲] and assayed on plates lacking uracil with 0.005% MMS. [B] Overexpression of rad51K-A191 sensitizes wild-type cells to MMS. DWY83 (RAD51) was transformed with pDB20 (Vector, ○), ADH:RAD51 [51], and ADH:rad51K-A191 [51K-A191; ■] and assayed on plates lacking uracil with 0.0025% MMS.

rad51K-A191 expression on MMS repair is that Rad51K-A191 is associating with endogenous proteins. To directly examine Rad51 protein–protein interactions in vivo, we used the GAL4 two-hybrid fusion system (Chien et al. 1991). For this assay, a gene is fused to both the DNA-binding and trans-activation domains of the yeast Gal4 protein and these fusions are coexpressed in a yeast strain containing a lacZ reporter gene downstream of a GAL operator (GGY1::171). If the fusion protein(s) interact, the DNA-binding and trans-activation domains of Gal4 become tethered and can trans-activate the lacZ reporter gene. Protein–protein interactions can be scored either by growth on plates containing X-gal or by measuring β-galactosidase activity in yeast extracts (see Materials and methods).

Plasmids were constructed in which the Gal4 DNA-binding domain [DB, amino acids 1–147] and the Gal4 transcriptional trans-activation domain [TA, amino ac­

ids 768–881] were fused to the amino terminus of full-length Rad51. GGY1::171 transformants coexpressing these two Rad51–Gal4 fusions (DB51 and TA51) were replica plated onto X-gal plates and colonies turned deep blue overnight. Extracts from these transformants were very active for β-galactosidase activity [289 Miller units of activity relative to 658 units for a GAL4 control] (Fig. 2A). Thus, the fusion proteins strongly interact in vivo. Neither Rad51–Gal4 fusion had an intrinsic trans-activation capacity, as the expression of either DB51 or TA51 with a vector control showed a background level of β-galactosidase activity [<1.0 Miller units]. Also, no blue colonies or β-galactosidase activity above background were detected when TA51 was coexpressed with a fusion of the mammalian p53 gene to the DNA-binding domain of Gal4 [DBp53], indicating that fused Rad51 proteins do not interact promiscuously with other proteins (Fig. 2A).

We used the two-hybrid system to localize the region(s) necessary for Rad51 self-interaction. A series of truncated GAL4–RAD51 fusions were constructed and cotransformed into GGY1::171 with either of the full-length RAD51 fusion plasmids (DB51 or TA51) and monitored for lacZ expression on X-gal plates. The truncated Gal4 fusions 51A, 51C, 51D, 51E, and 51G, which retain the amino-terminal one-third of the Rad51 protein to varying degrees, each scored positive for self-association [Fig. 2B]. Fusions 51A, 51C, 51D, 51E, and 51G overlap in a small region corresponding to the 33 amino acids encoded within the Bsu36I and NdeI sites as shown. To determine whether if this 33-amino-acid region was solely responsible for Rad51 self-association, we prepared the fusion protein 51H where the 33 amino acids were removed by an in-frame deletion (amino acids 78–112). Fusion 51H gave blue colonies when coexpressed with a full-length Rad51 fusion. It appears that the interaction domain is either larger than amino acids 78–112 and can be split, or removal of this domain reveals a second region of interaction. We conclude that the amino-terminal third of Rad51 is involved in self-association and that this association is probably not restricted to a single epitope.

Our observation that rad51K–A191 dominantly interferes with MMS repair in wild-type cells [Fig. 1B] suggests that inactive repair complexes may result from the interaction of mutant and wild-type Rad51. Thus, we examined the ability of Rad51K–A191 to associate with Rad51 in vivo. rad51K–A191 fusions to either GAL4 TA or DB [DB51K–A191 and TA51K–A191] were cotransformed into GGY1::171 with the corresponding wild-type or K-A191 mutant fusions. Both DB51K–A191 and TA51K–A191 strongly interacted with either mutant or wild-type fusion proteins at a level equivalent to the wild-type Rad51:Rad51 association [Fig. 2A; data not shown]. Therefore, the K191 residue, and presumably ATP binding, are not necessary for Rad51 self-association in vivo.

We have shown previously that Rad51 and Rad52 can interact physically in vivo via the carboxy-terminal third of Rad52 and that this association is necessary for DNA repair [Milne and Weaver 1993]. We used the truncated
Gal4–Rad51 fusions with Gal4–Rad52 fusions [DB–52 and TA–52] to map the region[s] of Rad51 that interact with Rad52. Blue colonies were observed when DB–52 or TA–52 were coexpressed with either 51A, 51C, 51E, 51H, and 51K–A191 but not with 51B, 51D, 51F, or 51G (Fig. 2B). Thus, the pattern of Rad52:Rad51 interaction is very similar to that demonstrated for Rad51 self-association and suggests that the Rad52:Rad51 interacting region is near or coincident with that of Rad51 self-association.

K. lactis RAD51 causes a dominant-negative MMS repair phenotype in S. cerevisiae

Examining the function of RAD52 epistasis group genes from other budding yeasts in S. cerevisiae can reveal activities that are conserved versus those that are species specific in DBS repair. For example, the K. lactis RAD52 homolog complements S. cerevisiae rad52Δ strains only weakly and dominantly interferes with DBS repair and recombination when overexpressed in wild-type cells (Milne and Weaver 1993). To identify a K. lactis homolog of RAD51, a genomic Southern blot with K. lactis DNA was probed with the S. cerevisiae RAD51 gene. We found a single cross-hybridizing band that was subsequently cloned from a size-fractionated XbaI K. lactis genomic library [Materials and methods]. The entire 1065-bp KIRAD51 open reading frame was located on a 4.5-kb XbaI–HindIII subfragment and the DNA sequence determined. KIRAD51 and ScRad51 are remarkably well conserved, showing 81% overall amino acid identity and 86% similarity (Fig. 3A). Most of the differences between KIRAD51 and ScRad51 are in the amino-terminal 80 amino acids, where there is only 46% identity. The remainder of the protein, which corresponds to the region of Rad51 with the strongest homology to RecA, shows >90% identity. KIRAD51 is considerably more homologous to ScRad51 and Rad51 proteins from S. pombe, mouse, chicken, and human, than to other S. cerevisiae RecA homologs [Rad55, Rad57, and Dmc1 [Fig. 3B; data not shown]]. Therefore, KIRAD51 is a Rad51 homolog.

To examine the activity of KIRAD51 in S. cerevisiae, an ARS CEN plasmid with KIRAD51 expressed from the KIRAD51 promoter [pRSKlSl] was transformed into a rad51Δ strain [DWY120] and tested for MMS repair activity. KIRAD51 only partially complemented DWY120 compared with the wild-type S. cerevisiae RAD51 gene [Fig. 4A]. The lack of full complementation could be attributable to poor expression of KIRAD51 in S. cerevisiae; however, KIRAD51 expressed from the S. cerevisiae ADH promoter on a multicopy plasmid complemented only slightly better [data not shown]. Thus, the poor complementation provided by KIRAD51 may be only likely a function of its weak intrinsic activity in S. cerevisiae, rather that poor expression. KIRAD51 may be only partially active because of its inability to interact productively with S. cerevisiae repair proteins.

To determine whether KIRAD51 expression has a dominant-negative effect on DNA repair in S. cerevisiae, we transformed the wild-type strain DWY83 with KIRAD51, RAD51, and vector alone and measured MMS...
Donovan et al.

Weaker than that of Rad51K-A191, K1RAD51 appears to be a common suppressor of Rad51K-A191. The region of RecA homology is indicated by parenthesis) are (C), (P), (H), (I, V), (L, M), (K, R), (S, T), (A, G) (F, W, Y), (N, D, E, Q). The region of RecA homology is indicated by shaded boxes; while similarities are shaded without boxes. Amino acid similarity groups (in parenthesis) are (C), (P), (H), (I, V), (L, M), (K, R), (S, T), (A, G) (F, W, Y), (N, D, E, Q). The region of RecA homology is indicated by the line above the sequences. (B) The amino-terminal self-interaction domain of S. cerevisiae Rad51 protein [ScRad51] aligned with K. lactis Rad51 (KlRad51) and S. pombe Rad51 (SpRad51), and human Rad51 (HsRad51). Identity and similarities are indicated as described above.

Figure 3. Comparison of S. cerevisiae and K. lactis Rad51 and the amino termini of Rad51 homologs. (A) The S. cerevisiae Rad51 protein [ScRad51] aligned with K. lactis Rad51 (KlRad51) using the PileUp program of the Genetics Computer Group (1991). Identity is indicated by shaded boxes, while similarities are shaded without boxes. Amino acid similarity groups (in parenthesis) are [C], [P], [H], [I, V], [L, M], [K, R], [S, T], [A, G] [F, W, Y], [N, D, E, Q]. The region of RecA homology is indicated by the line above the sequences. (B) The amino-terminal self-interaction domain of S. cerevisiae Rad51 protein [ScRad51] aligned as above with K. lactis Rad51 (KlRad51), S. pombe Rad51 (SpRad51), and human Rad51 (HsRad51). Identity and similarities are indicated as described above.

Survival over 5 days. KIRAD51 expression resulted in only 10% survival after 5 days, whereas RAD51 or vector alone showed 100% survival after only 2 days (Fig. 4B). The dominant-negative effect of KIRAD51 appears to be weaker than that of rad51K-A191, which in the same experiment showed no growth on MMS containing plates even after 5 days (data not shown).

The dominant-negative effect exerted by KlRad51 could result from its interaction with ScRad51. To determine whether KlRad51 and ScRad51 can physically associate, TAK51 was prepared and cotransformed into GGY1::171 with DB51. Transformants replica-plated onto X-gal plates turned deep blue overnight, and extracts had 414 Miller units of β-galactosidase activity (Fig. 2A). The interaction of KlRad51 with ScRad51 is at least as strong as ScRad51 self-association.

Figure 4. KIRAD51 partially complements a S. cerevisiae rad51Δ strain and has a dominant-negative effect on MMS repair in a wild-type strain. MMS sensitivity was measured as described in Fig. 1 and Materials and methods. (A) Expression of KIRAD51 partially complements rad51Δ cells. MMS sensitivity of DWY129 [rad51Δ] transformed with pDB20 [Vector, ○], ADH:51 [51, ●], and pRSK51 (KLS1, ■) and assayed on plates lacking uracil with 0.0025% MMS. (B) Overexpression of KIRAD51 sensitizes wild-type cells to MMS. DWY83 [RAD51] was transformed with pDB20 [Vector, ○], ADH:51 [51, ●], and ADH:KIR51 (KLS1, ■) and assayed on plates lacking uracil with 0.0025% MMS.

GAL4–RAD51 fusions are additional dominant-negative alleles of RAD51

We found that Gal4–Rad51 fusions [TA51 and DB51] did not complement the MMS sensitivity of a rad51Δ strain (data not shown). Because other mutant proteins, which retain interaction epitopes, dominantly interfered with DSB repair, we examined the phenotype of wild-type cells expressing TA51 and DB51. The wild-type strain DWY127 was transformed with either DB51 or TA51, and DSB repair of the transformants was measured on MMS selection plates. DB51 expression considerably reduced DWY127 survival on MMS plates when compared with a vector only control (Fig. 5A). The effect of DB51 expression was similar to that of rad51K-A191. Likewise, expression of TA51 also strikingly reduced MMS survival of DWY127 (data not shown). Although the expression of TA51 or DB51 also appeared to decrease the growth of GGY1::171, UV sensitivity of cells expressing DB51 was indistinguishable from those with vector only (data not shown). Thus, Gal4–Rad51 fusions must specifically interfere with DSB repair in wild-type yeast.
Dominant-negative alleles of RAD51

Because Rad51 can both self-associate and interact with Rad52, mutant Rad51 may interfere with DNA repair by nonproductively associating with either or both proteins. To examine this, we assayed the MMS repair phenotypes of rad51Δ and rad51Δ rad52Δ strains expressing mutant alleles. rad51Δ strains are less MMS sensitive than either rad52Δ or rad51Δ rad52Δ; thus, mutant Rad51 that associates nonproductively with Rad52 could increase the MMS sensitivity of a rad51Δ strain, which has Rad52. A mutant that nonproductively associates with Rad51 would have no effect in this strain. Additionally, if the effect of mutant Rad51 is limited to its interactions with Rad51 and Rad52, there should be no additional effect on MMS sensitivity in a rad51Δ rad52Δ strain. DNA repair phenotypes of rad51Δ and rad51Δ rad52Δ strains were measured on plates with MMS concentrations reduced relative to experiments already described (Materials and methods)

The rad51Δ strain DWY129 was transformed with RAD51, rad51K–A191, DB51, or vector control and examined for MMS sensitivity. RAD51 fully complemented DWY129. Interestingly, DB51 increased the MMS sensitivity of DWY129, whereas rad51K–A191 exhibited similar MMS sensitivity as the vector control (Fig. 5B). TA51 expressed in another rad51Δ strain (DWY120) also increases MMS sensitivity relative to a vector only control (data not shown). Thus, both TA51 and DB51 can disrupt MMS repair independently of Rad51, whereas rad51K–A191 cannot. We also found that both DB51 and TA51 independently increased the MMS sensitivity of rad52Δ strains (where Rad51 is present), whereas rad51K–A191 did not (data not shown). Thus, it appears that TA51 and DB51 can also increase MMS sensitivity in the absence of Rad52.

Next, we tested the MMS repair phenotypes of a rad51Δ rad52Δ strain (DWY144) transformed with RAD51 and RAD52, rad51K–A191, DB51, or vector alone. These assays were also performed with reduced MMS concentrations so that hypersensitivity could be scored. Expression of wild-type Rad51 and Rad52 fully complemented the MMS sensitivity of DWY124. In contrast, transformants that expressed rad51K–A191 and DB51 had the same sensitivity as vector alone (Fig. 5C). In total, these results suggest that the level of MMS sensitivity in yeast expressing Gal4–Rad51 fusion proteins depends on the presence of either Rad51 or Rad52. In the absence of both proteins, MMS sensitivity is equal to that of DWY144.

Evidence for other protein components of a Rad51–Rad52 repair complex

K. lactis and S. cerevisiae are relatively closely related; thus it is unlikely that the poor complementation of S. cerevisiae mutants by KIRAD51 and KIRAD52 (Fig. 4A; and Milne and Weaver 1993) is attributable to functional divergence of their gene products. A more likely explanation is that the protein–protein interaction epitopes have diverged. Because we have observed in vivo physical association of Rad51 and Rad52 from both species (this paper; Milne and Weaver 1993), it is possible that codivergence of these two proteins alone is sufficient to explain the poor complementation. Alternatively, other
species-specific interactors with Rad51 and Rad52 may be required. KIRAD51 and KIRAD52 were coexpressed in a *S. cerevisiae rad51Δ rad52Δ* strain [DWY144], such that full complementation would be expected if only Rad51 and Rad52 act together in DSB repair. For this experiment the genes were expressed from low-copy-number plasmids with their own promoters. Cells cotransformed with KIRAD51 and KIRAD52, KIRAD51 and ScRAD52, ScRAD51 and KIRAD52, and ScRAD51 and ScRAD52 were tested for MMS survival. Although the *S. cerevisiae* genes fully complemented the *rad51Δ rad52Δ* strain, coexpression of KIRAD51 and KIRAD52, and the mixtures of RAD51 and RAD52 from *S. cerevisiae* and *K. lactis* provided only low levels of complementation [Fig. 6]. These effects are not likely to arise from the weak activity of *K. lactis* promoters in *S. cerevisiae* because the KlRad51 and KlRad52 constructs used in these experiments complemented respective *S. cerevisiae rad51Δ* or *rad52Δ* strains nearly as well as KIRad51 and KlRad52 overexpressed from ADH2 2μ plasmids. Thus, species-specific interaction of RadSl and Rad52 alone does not provide wild-type level DSB repair in *S. cerevisiae*. This result supports the hypothesis that there are additional proteins that must interact with Rad51 and Rad52 for efficient DSB repair.

Discussion

Our results with dominant-negative RAD51 alleles are consistent with Rad51 homotypic and heterotypic protein–protein interactions being important for DSB repair. Self-association, as well as Rad51:Rad52 interactions, are mediated by the amino-terminal region of Rad51. These associations appear to be biologically significant because rad51K–A191, *K. lactis* RAD51, and GAL4–RAD51 fusions all disrupt DSB repair in wild-type strains. In the case of rad51K–A191, the dominant-negative effect depends solely on the presence of wild-type Rad51, indicating that it blocks DSB repair via its interaction with endogenous Rad51. Two other dominant-negative alleles, GAL4–RAD51 fusions and KIRAD51, have phenotypes indicating that other components of a Rad51/Rad52 repair complex are likely to be necessary for Rad51 function. The significance of these effects and protein–protein interactions in DSB repair will be discussed.

Rad51 homotypic interaction and RecA homology

The amino acid similarity between bacterial RecA and Rad51 suggests that these proteins have an evolutionarily conserved role in DNA repair and recombination [Shinohara et al. 1992, 1993]. Our results with dominant-negative RAD51 alleles and the identification of an amino-terminal self-interaction epitope for Rad51 are consistent with similar findings for RecA. Carboxy-terminal truncations of RecA dominantly interfere with DNA repair in wild-type bacteria, indicating that the amino-terminal region is likely involved in self-interaction and that the interaction is important for RecA function [Yarranton and Sedgwick 1982; Horii et al. 1992; Tateishi et al. 1992]. Amino-terminal deletions of 15 or 28 amino acids dominantly disrupt wild-type RecA function, whereas a more extensive deletion of 59 amino acids has no effect [Horii et al. 1992]. These truncated proteins identify a region of RecA responsible for dominant interference and, therefore, self-interaction. Additionally, RecA missing 33 amino acids at its amino terminus fails to bind ssDNA, apparently because of a reduced ability to self-associate [Ogawa and Ogawa 1986]. The RecA crystal structure confirmed that residues between amino acids 15 and 59 lie at the interface between RecA subunits and are likely critical for polymer assembly [Story et al. 1992]. From these studies, the ability of mutant RecA to interfere with endogenous RecA activity correlates with RecA self-interaction.

As with bacterial RecA, our mapping data shows that the amino-terminal region of Rad51 is required for homotypic associations. Only truncated Gal4–Rad51 fusions that retain this region can associate with full-length Rad51 fusions [Fig 2B]. Based on the central core of RecA homology, the amino terminus of Rad51 is 120 amino acids longer. Although the region immediately flanking the core homology has limited amino acid similarity to RecA, both proteins have predicted α-helical structures in this region [Story et al. 1992, 1993]. It is likely that an amino-terminal α-helix is involved in the self-association of Rad51 monomers.

KIRad51 and ScRad51 are very similar over their entire lengths; however, the amino-terminal region of KIRad51 is both smaller and relatively divergent from the ScRad51 [Fig. 3]. Over the region of Rad51 homotypic interaction [amino acids 1–151], the *K. lactis* and *S. cerevisiae* proteins are only 58% similar. Despite this dif-
ference, *KlRad51* and Rad51 are capable of physically interacting [Fig 2A]. The sequence divergence in the region important for protein-protein interactions may explain why *KlRad51* only partially complements *rad51Δ* strains and behaves as a dominant-negative allele in wild-type cells [Fig. 4]. *KlRad51* may not properly associate with ScRad51 and ScRad52, which could result in DSB repair complexes of reduced activity. In contrast to the partially active *KlRad51*, *S. pombe*, mouse, and human Rad51 homologs do not complement *S. cerevisiae rad51Δ* strains at all [Shinohara et al. 1993; Donovan et al., unpubl.]. In addition, HuRad51 fails to interact with ScRad51 by two-hybrid analysis and does not exert a dominant-negative phenotype in wild-type yeast [data not shown]. These Rad51 homologs are even more divergent from *S. cerevisiae* Rad51 at their amino termini [Fig. 3B]. It appears that the increasing divergence of this region in Rad51 homologs limits their ability to interact with endogenous Rad51 and complement *rad51Δ* defects.

Only truncated Gal4–Rad51 fusions containing the amino-terminal region associate with full-length Rad51 [Fig. 2B]. We also tested combinations of the truncated fusions to determine which regions of both Rad51 partners were needed for association. Only Rad51 fusion proteins containing the amino-terminal region can interact with other truncated fusions. For example, S1A will interact with S1, S1A, S1C, S1D, S1E, and S1G but not with S1B or S1F [data not shown]. This suggests that Rad51 monomers interact in a head-to-head manner. However, the packing of RecA seen in the crystal structure is a head-to-tail association, where β-strand 0 and α-helix A of one molecule contact β-strand 3 and α-helix E of an adjacent molecule in an antiparallel fashion [Story et al. 1992]. Depending on how the sequences are aligned, the corresponding region of Rad51 would be somewhere between amino acids 140 and 170. This region, however, is absent in several of the Gal4–Rad51 fusion proteins that interact [S1A, S1C, S1G], and present in the truncated fusions S1B and S1F that do not interact. Therefore, Rad51 and RecA complexes may be fundamentally different in their packing structure, despite the striking physical similarities observed between their nucleoprotein filaments [Ogawa et al. 1993]. Alternatively, the association of Rad51 with DNA may order the packing in a manner that we cannot observe by fusion protein associations. The two-hybrid assay presumably only requires dimerization for detection. Rad51:Rad51 dimers may not require all of the interactions necessary for filament formation on DNA. It is also formally possible that the two-hybrid assay is not measuring direct self-association but that another factor in the yeast nucleus facilitates the interaction of Gal4–Rad51 fusion proteins. Endogenous Rad51, which is present in the GGY1::171, is a likely candidate for this factor. We tested the possibility that endogenous Rad51 was influencing the two-hybrid results. Rad51 homotypic association was unchanged in a *rad51Δ* derivative of GGY1::171 [data not shown]. Thus, the self-interaction observed is neither dependent on nor influenced by endogenous Rad51.

Rad51K–A191 exerts its effect through homotypic associations

The simplest explanation for the phenotypes produced by dominant-negative *RAD51* alleles is that mutant Rad51 nonproductively associates with endogenous proteins involved in DSB repair. Our data indicate that the interaction of endogenous Rad51 with mutant Rad51K–A191 and *KlRad51* drives dominant-negative DNA repair phenotypes. The values for β-galactosidase activity by two-hybrid analysis demonstrate strong and/or stable Rad51:Rad51K–A191 and Rad51:KlRad51 interactions. These alleles both impair DSB repair when expressed in wild-type strains [Figs. 1 and 4]. Also, the *rad51K–A191* allele depends on endogenous Rad51 to exert a dominant negative effect because DSB repair is not reduced by the addition of Rad51K–A191 to a *rad51Δ* strain [Fig. 5].

Two mechanisms could describe the nonproductive association of mutant Rad51 with DSB repair complexes. First, the overexpression of altered Rad51 may disrupt the formation of repair complexes by occupying all Rad51 protein–protein interaction sites. Instead of forming extended Rad51 complexes, these associations could primarily create inactive homo- or heterodimers or lower-order multimers of Rad51 that are too small to be functionally significant. Alternatively, mutant and wild-type Rad51 may associate to form extended, but mixed, complexes that have defective DSB repair activity. Similar mechanisms have been proposed for the dominant interference of RecA function by truncated *recA* alleles [Yarranton and Sedgwick 1982; Horii et al. 1992].

Rad51K–A191 has no additional DSB repair phenotype in a *rad52Δ* strain even though this strain has wild-type Rad51 [data not shown]. Considering that *rad52Δ* strains are more MMS sensitive than *rad51Δ* strains, it is possible that interference of Rad51 function cannot be detected in a *rad52Δ* strain. However, DB51 and TA51 did show dominant-negative phenotypes in both *rad51Δ* and *rad52Δ* strains, but not in *rad51Δ rad52Δ* strains [Fig. 5 and data not shown]. Thus, functionally significant Rad51:Rad51 associations may also be dependent on Rad52 activity to be manifest. Rad51K–A191 may form inactive filaments with endogenous Rad51, whereas DB51 and TA51 may not form filaments at all, but force nonproductive interactions with Rad52.

Rad51 heterotypic interactions

We demonstrated previously that Rad51 and Rad52 interact in vivo and that this interaction is important for DSB repair in *S. cerevisiae* [Milne and Weaver 1993]. Using truncated Gal4–Rad51 fusions, we found that Rad52:Rad51 interaction also maps to the amino-terminal region of Rad51 [Fig. 2B]. Rad51 self-association and the weaker Rad51:Rad52 interaction are separable for two of the truncated Gal4–Rad51 fusions (S1D and S1G) but are otherwise identical. Because of the close proximity of Rad51:Rad51 and Rad51:Rad52 interactions, Rad51 self-association may be influenced by Rad52. We tested the Rad52 dependence of Rad51 self-association in
a rad52Δ derivative of GGY1::171. TA51 and DB51 co-expression continued to produce a strong signal for lacZ expression, indicating that Rad51 self-association is independent of Rad52 (data not shown).

Our data indicate that Rad51::Rad51 and Rad51::Rad52 associations are not sufficient for DSB repair. The coexpression of KlrRad51 and KlrRad52 in a S. cerevisiae rad51Δ rad52A strain does not significantly restore DSB repair (Fig. 6). KlrRad51 and KlrRad52 are active proteins in S. cerevisiae, however, because each is able to partially complement a respective null mutant (Fig. 4; Milne and Weaver 1993). It is unlikely that their lack of complementation is attributable to the weak activity of K. lactis promoters in S. cerevisiae. Both KIRAD51 and KIRADS52 showed only slightly better complementation in their respective single deletion strains when expressed from the powerful S. cerevisiae ADH promoter. Moreover, Western blots using anti-Rad52 antiserum show that levels of KlrRad52 produced in a S. cerevisiae rad52Δ strain when it was expressed from the K. lactis promoter were comparable to that of ScRad52 in wild type (data not shown). Our interpretation of these results is that additional species-specific components are required to modulate Rad51/Rad52 functions. At least some of these additional components may be mediated by protein–protein associations. Other S. cerevisiae RecA homologs could be candidates for additional Rad51 interacting proteins. Rad55, Rad57, and Dmc1 are also structurally related to RecA and function in DNA repair and recombination (Kans and Mortimer 1991; Bishop et al. 1992; Lovett 1994). We have been unable to detect the interaction of Rad51 with either Rad57 or Dmc1 by the two-hybrid methodology, indicating that these interactions are either weak and not detectable by our fusion proteins or that these proteins do not physically interact in yeast (data not shown).

Dominant-negative alleles of Rad51 have demonstrated the importance of protein–protein interactions in DSB repair in yeast. Dominant-negative alleles may also be useful for determining the role Rad51 homologs have in DSB repair and recombination in mammalian cells. We are examining the effect of overexpressing a human rad51 allele with a missense mutation in its ATP-binding site in mammalian cells.

Materials and methods

Strains, media, and genetic methods

All yeast strains used in this study are shown in Table 1. DWY120 is a 5-fluoro-orotic acid (5-FOA) selected clone of NKY1826. DWY144, a rad51Δ rad52Δ strain, is a haploid segregant of the diploid strain DWY140 constructed by mating DWY97 (Milne and Weaver 1993) with DWY129. Yeast strains were grown at 30°C in appropriate media as described previously (Sherman et al. 1983). Liquid media used were YPD (1% yeast extract, 2% Bacto-peptone, 2% dextrose) for rapid growth, SC media lacking amino acids for plasmid selection (0.67% yeast nitrogen base, 2% dextrose, without the appropriate amino acids). Solid media was prepared by adding Bacto-agar to 2%. Transformations were performed as described previously (Gietz et al. 1992), with the addition of dimethylsulfoxide (DMSO) up to 10% before heat shock as described by (Hill et al. 1992).

Bacterial plasmids

Four RAD51 subclones were prepared that served as parent molecules for all further RAD51 constructs. p51SP was created by ligation of the 1.5-kb genomic StuI–PstI fragment, which contains the entire RAD51 open reading frame into BamHI (filled-in)–PstI cut pSKII+. p51B, used to build GAL4 fusion constructs, was made in multiple steps. A polymerase chain reaction (PCR) fragment amplified from a genomic clone with the degenerate primers 51N (5'-GGCGGATCCA/A/GGCA/A/G/C-A/A/GGCA/C/TAT-3') and 51C (5'GGCGGATCC/C/TAG/G/TGTC/TACT/C-3'), was digested with BamHI and ligated to BamHI-cut pSKII+. The 1-kb BamHI–BstXI fragment from this construct was ligated to BamHI-cut pSKII+ along with a 500-bp BstXI–EcoRV–BamHI-linked fragment from p51SP. p51B, therefore, contains sequences that encode all but the four amino-terminal amino acids of the Rad51 protein along with 300 bp of downstream noncoding sequence from p51SP. p51B–A191 was constructed in two steps. A PCR fragment was amplified from p51SP using the primers 51R (5'-GCTG-GAATTCAGGACAGGTGCGTCCCAGCTATG-3') and 51C (5'GGGATCC/C/TAG/G/TGTC/TACT/C-3') (described above), digested with BamHI and BamHI, and ligated to EcoRI–BamHI-cut pSKII+. An EcoRI–PvuII fragment from this intermediate was ligated to the EcoRI–HincII-digested backbone of p51B to give p51BK–A191. This construct contains two nucleotide changes in the coding sequences that result in a substitution of lysine to alanine at position 191. p51SPK–A191 was made by ligating an EcoRI–Xhol fragment from p51BK–A191 to the EcoRI–Xhol-digested backbone of p51SP. This construct contains the K-A191 mutation in the context of the entire RAD51 open reading frame.

Two-hybrid fusion protein plasmids

Plasmids for the GAL4 two-hybrid fusion assay were made by subcloning various fragments from p51B and p51SP into pMA424 (containing amino acids 1–147 of the DNA-binding domain of GAL4) and pGAD2F and pGAD10 (containing amino acids 768–881 from the trans-activation domain of GAL4; Chien et al. 1991). pMA51 (DB51) and pGAD51 (TA51) were made by ligating the entire BamHI insert from p51B into the BamHI site of pMA424 and pGAD2F. pMA51A and pGAD51A were made by ligating a 560-bp BamHI–EcoRI–BamHI-linked fragment from p51B into BamHI-cut pMA424 and pGAD2F. pMA51B and pGAD51B were made by ligating a 0.9-kb EcoRI fragment from p51SP, containing the carboxy-terminal half of RAD51, into the EcoRI site of pMA424 and pGAD10. pMA51C and pGAD51C were made by filling in the 1250-bp Bsu36I–EcoRV fragment from p51SP and ligating to BamHI-digested and filled-in pMA424 and pGAD2F. pGAD51D was constructed by filling in the 330-bp Bsu36I–EcoRI fragment from p51SP and ligating to BamHI-cut and pGAD2F. pMA51E was made from a subclone of p51B in which the 120-bp Ndel–Ndel fragment was cut out, and the Ndel ends filled-in and religated. This construct thus has an in-frame deletion of 39 amino acids. pMA51D contains the BamHI insert from this intermediate ligated to BamHI-cut pMA424. pMA51F was made by filling in the 1-kb Ndel–BamHI fragment from p51B and ligating it to pMA424 that had been cut with EcoRI and filled in. pMA51G contains the 325-bp Ndel–Ndel fragment from p51SP filled in and ligated to EcoRI-cut and filled-in pGAD10. The fusion protein produced by this construct contains the four amino-terminal amino acids of Rad51 that all others lack. pMA51H was
made in several steps. A Dru complete—Ndel partial fragment of p51B was filled in and ligated to blunted Bsu36I–EcoRV-cut backbone of p51SP. This intermediate construct contains an in-frame deletion of the 35 amino acids encoded between the Bsu36I and Ndel sites. The coding sequences of the intermediate were amplified by PCR using the primers 5IN and 51C described above, and the BamHI-digested PCR product was ligated to BamHI-cut pMA424 to give pMA51H. pMA51K–A191 and pGAD51K–A191 were made by inserting the BamHI insert from p51BK–A191 into BamHI site of pMA424 and pGAD2F. All GAL4–RAD51 fusion constructs were sequenced to ensure that the fusions were correct in-frame.

pMA52 (DB-52) and pGAD52 (TA-52) have been described elsewhere [Milne and Weaver 1993]. pMAK51S was built by PCR amplifying the coding sequences of a genomic subclone of the K. lactis RAD51 gene [described below] using the primers k51N (5'-GGGATCCAGATCAATCATCGTCTTC-3') and k51C (5'-GGGGATCCAGATCAATCATCGTCTTC-3'). This PCR product was digested with BamHI and ligated to BamHI-digested pMA424.

Yeast expression plasmids

S. cerevisiae and K. lactis RAD51 alleles were overexpressed in S. cerevisiae with the E. coli/S. cerevisiae shuttle vector pDB20 [Becker et al. 1986]. This expression vector contains URA3, a 2μ origin, and the ADH1 promoter and terminator flanking HindIII, NotI, and BsrXI sites. pDBRADS1 (51) was constructed by filling in a XbaI–EcoRV fragment from p51SP and ligating this to the filled-in HindIII site of pDB20. pDBS1K–A191 (51K–A191) was built by filling in an XbaI fragment from p51SP–A191 and ligating to HindIII and filled-in pDB20. pDBK51S was made by ligating a filled-in 1.8-kb genomic Asel fragment from pKL51HX [described below] to the filled-in HindIII site of pDB20. Single-copy expression of S. cerevisiae RAD51 and K. lactis RAD51 and RAD52 was achieved with the E. coli/S. cerevisiae shuttle vectors pRS313 and pRS316 (Sikorski and Hieter 1989). These vectors contain HIS3 and URA3 sequences, respectively, along with CEN6 and ARSH4 sequences. pRSS51 was constructed by ligating the BamHI genomic fragment containing the S. cerevisiae RAD51 gene to BamHI-cut pRS313. pRSS51 was made by ligating the HindIII–XbaI genomic fragment containing the K. lactis RAD51 gene to EcoRV-cut and -blunted pRS313. pRSS51K52 was constructed by ligating the XbaI genomic fragment containing the K. lactis RAD51 gene to SpeII-cut pRS316. Single-copy expression of S. cerevisiae RAD52 was achieved with YCp52. This construct has a SalI fragment containing S. cerevisiae RAD52 filled in and ligated to EcoRI–BamHI-cut and filled-in backbone from YCpGal:RI [Barnes and Rine 1985] and has the URA3 gene and ARS1 and CEN4 sequences.

Cloning and sequencing K. lactis RAD51

Genomic DNA from K. lactis (ATCC 8585) was digested with XbaI and size fractionated on a 1% agarose gel, and DNA fragments were glass bead purified and ligated to XbaI-cut pSKII. Approximately 4100 E. coli DH5α colonies were screened by low-stringency hybridization [30% formamide, 1× Denhardt’s solution, 1% SDS, 0.75 μM NaCl, 50 mM NaH₂PO₄, 5 mM EDTA, and 100 mg/ml of sheared salmon sperm DNA at 42°C with a 3.7-kb BamHI fragment that contains the entire S. cerevisiae RAD51 gene. Three 9-kb clones that have a common restriction map were identified. The K. lactis RAD51 open reading frame was sequenced using Sequenase 2.0 (U.S. Biochemical) by standard procedures.

GAL4 two-hybrid interaction assay

The GAL4–RAD51 fusion constructs described above were cotransformed into GGY1::171. Transformants were incubated 2–10 days at 30°C until colonies were fairly large. β-Galactosidase production was determined initially by replica-plating colonies onto plates containing X-gal (GIBCO) and then quantitated by a liquid assay [Chien et al. 1991]. This was modified so that the assay was performed on cells scraped from selective plates because of differences in growth that appear to result from the expression of Rad51 fusion proteins.

MMS cell survival assay

The MMS phenotype of strains expressing various RAD51 alleles was measured essentially as described [Milne and Weaver 1993]. Yeast colonies were picked in triplicate into H₂O, diluted 1:10, and serially diluted [six fivefold serial dilutions]. Aliquots [10 μl] of each dilution were spotted in duplicate on selective plates with or without the appropriate concentration of MMS. Plates were incubated at 30°C, and colonies were counted daily for 5 days. The relative resistance of strains is shown as the daily ratio of the number of colonies on MMS plates relative to the total number of colonies appearing on the non-MMS control plates. This number represents an average of the three individual transformants picked for each strain. The concentration of MMS used to measure the dominant negative effect of mutant alleles in the wild-type strains DWY83 and DWY127 was 0.0025%. The concentration of MMS used in the rad51Δ strains DWY120 and DWY129 to assess complementation of various alleles was 0.005%. The dominant effect of various alleles expressed in rad51Δ strain DWY120 was measured on plates that were 0.0025% MMS. The concentration of MMS used to measure dominant-negative effects of alleles expressed in rad51Δ rad52Δ strain DWY144 was 0.0006%.

Acknowledgments

We thank T. Orr-Weaver for critical reading of the manuscript and members of the Weaver laboratory for many helpful discussions. S. cerevisiae strains were kindly provided by N. Kleckner, R. Kolodner and R. Rothstein. We are grateful to S. Fields for strains and plasmids for the GAL4 two-hybrid fusion analysis. This work was supported by a Barr Program grant to D.T.W. The publication costs of this article were defrayed in part by payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 USC section 1734 solely to indicate this fact.

References

Homotypic and heterotypic protein associations control Rad51 function in double-strand break repair.

J W Donovan, G T Milne and D T Weaver

Genes Dev. 1994, **8**: Access the most recent version at doi:10.1101/gad.8.21.2552

References
This article cites 40 articles, 12 of which can be accessed free at:
http://genesdev.cshlp.org/content/8/21/2552.full.html#ref-list-1

License

Email Alerting Service
Receive free email alerts when new articles cite this article - sign up in the box at the top right corner of the article or click here.