Transcriptional activation by the pseudorabies virus immediate early protein

Katherine J. Martin, James W. Lillie, and Michael R. Green

Department of Biochemistry and Molecular Biology, Harvard University, Cambridge, Massachusetts 02138 USA

The pseudorabies virus immediate early (IE) protein is a potent, promiscuous activator of viral and cellular gene transcription. The promiscuous action of IE protein has led to the suggestion that it functions by an unusual mechanism. Here, we show that IE protein has the two essential features of a typical cellular activator: (1) a transcriptional activation region, and (2) a separable region that directs IE protein, or an unrelated activation region, to the vicinity of the promoter. We map the IE protein activation region to 34 amino acids, demonstrate that it is comparable in strength to the strongest known activation region, and show that it is required for the transcriptional activity of the intact IE protein. The 34-amino-acid IE protein activation region is highly acidic. We provide evidence that it uses the same cellular target as an unrelated acidic activator and a different target from that of a nonacidic activator. Our results provide insight into the function of promiscuous eukaryotic transcriptional activators.

[Key Words: Pseudorabies virus; IE protein; transcriptional activation; squelching]

Received September 6, 1990; revised version accepted October 17, 1990.

Pseudorabies virus, a member of the herpes virus family, expresses an immediate early (IE) protein that is required to activate early viral gene transcription (Ihara et al. 1983). The pseudorabies IE protein and the homologous IE protein of herpes simplex virus (HSV), ICP4, can also activate many additional genes (for review, see Tevethia and Spector 1989). For example, IE protein activates transcription of the early genes of the unrelated adenovirus and, remarkably, does so more efficiently than the normal activator of these genes, the adenovirus Ela protein [Feldman et al. 1982; Tremblay et al. 1985]. IE protein also activates, among others, the cellular β-globin gene [Green et al. 1983], the human immunodeficiency virus-1 long terminal repeat (HIV-1 LTR, Yuan et al. 1989), and even genes transcribed by RNA polymerase III (Gaynor et al. 1983, Ahlers and Feldman 1987). Because these different genes have no common promoter element, it would appear that activation by IE protein is highly promiscuous. On this basis, it has been suggested that IE protein functions in a manner fundamentally different from that of cellular transcriptional activators (for review, see Berk 1986).

The pseudorabies IE protein is similar in several respects to the adenovirus Ela protein. First, both Ela and IE proteins activate transcription of adenovirus early genes, and in fact, IE protein can substitute for Ela protein in an adenovirus infection [Feldman et al. 1982; Tremblay et al. 1985]. Second, both IE and Ela proteins can activate transcription of a variety of viral and cellular genes (for review, see Berk 1986). Third, neither Ela nor IE protein is a typical sequence-specific DNA-binding protein.

The adenovirus Ela protein has been analyzed extensively. Recent studies show that like a typical cellular activator, Ela protein functions at the promoter and contains at least two functional domains: a potent transcriptional activation region and a promoter-targeting region [Lillie and Green 1989]. The promoter-targeting region appears to function by interacting with a cellular DNA-binding protein, ATF-2 [Liu and Green 1990]. The ATF-2–Ela interaction can direct Ela protein to the adenovirus early promoters, which contain ATF-binding sites. The activation region of Ela protein appears to interact with the basic transcriptional machinery through a cellular “adaptor,” an auxiliary transcription factor not used by acidic activators [Martin et al. 1990].

Here, we show that like Ela protein, the pseudorabies virus IE protein has the two essential properties of a typical cellular activator. IE protein has a potent transcriptional activation region, which is probably of the acidic class, and a separable region required for promoter targeting. We show further that both activities are critical for the function of the intact IE protein.

Our results, in conjunction with other studies [Cromlish et al. 1989], explain how eukaryotic transcriptional activators can function promiscuously.
Results

IE protein contains a transcriptional activation region

We first asked whether IE protein contains a transcriptional activation region comparable to that found in typical eukaryotic activators. We fused IE protein to the minimal DNA-binding region of the yeast GAL4 protein [amino acids 1–147]. Transcriptional activation by this GAL4–IE fusion protein was assayed after cotransfection with a chloramphenicol acetyltransferase (CAT) reporter plasmid whose promoter contained GAL4-binding sites upstream of a TATA box. Figure 1 shows that GAL4–IE stimulated transcription 260-fold from the GAL4 site-containing promoter. To obtain this high level of transcription required that the promoter contain GAL4-binding sites and that the IE protein be fused to the GAL4 DNA-binding domain. [To compensate for possible differences in expression levels between the IE and GAL4–IE proteins, a wide range of expression plasmid amounts have been transfected. Fig. 1 shows the maximum level of transcriptional activation observed.]

The IE protein transcriptional activation region is contained within amino acids 1–34

We then localized the region of the IE protein responsible for transcriptional activity by analyzing a series of GAL4–IE derivatives. In the course of these studies we found that transcription was inhibited upon transfection of high amounts of DNA expressing the GAL4–IE derivative. As discussed in detail below, we believe that the inhibition of transcription at high levels of activator is due to “squelching” [see Ptashne 1988]. Thus, to quantify the true activity of a GAL4–IE derivative requires that a range of activator amounts be tested. In the following experiment and in those depicted in Figures 1, 3, and 4, the data presented represent the maximum level of transcription observed for a particular GAL4–IE derivative.

The results shown in Figure 2 summarize the activity of a series of carboxy-terminal and amino-terminal deletion mutants. These and all other GAL4–IE derivatives described here are produced at comparable levels (within two- to threefold), as determined by immunoblot analysis [data not shown]. Successive carboxy-terminal deletions, removing amino acids 1460 to 34 of IE protein, resulted in steadily increasing levels of transcriptional activity. The carboxy-terminal deletions interfere with transcriptional activation when amino acids beyond residue 34 are removed. All amino-terminal deletions, including the removal of IE protein amino acids 1–3, interfere with transcriptional activity [Fig. 2]. Thus, a small region of the IE protein, amino acids 1–34, comprises a remarkably potent activation region that can stimulate transcription 755-fold. This level of activation is comparable to that of the notoriously potent HSV-1 VP16 activation region [Sadowski et al. 1988; Triezenberg et al. 1988]. The unusually high activity of IE protein amino acids 1–34 strongly suggests that it is a genuine activation region and not merely a sequence that functions adventitiously when fused to the GAL4 DNA-binding domain. This conclusion is verified by experiments presented below.

IE protein amino acids 1–34 are critical for activation of promoters that lack GAL4 sites

We then tested whether IE protein amino acids 1–34 are required for transcriptional activity when IE protein is not directed to a promoter via the GAL4 DNA-binding domain. We used the adenovirus E4 promoter as a reporter, which lacks GAL4-binding sites and is strongly activated by the normal IE protein [Ihara et al. 1983; Fig. 3]. Figure 3 [left] shows that, as expected, both IE and GAL4–IE proteins activated transcription from E4–CAT. Because the E4 promoter lacks GAL4 sites, the GAL4 [1–147] sequences in GAL4–IE are irrelevant. In the following experiment GAL4 sequences are included to [1] ensure that all IE protein derivatives have the same
pressed at equivalent levels (within two- to threefold) in CHO cells (data not shown).

The amino-terminal sequence, an important determinant of protein stability (Bachmair et al. 1986; Slavicek et al. 1988), and (2) facilitate specific control experiments.

Deletion of the first 29 or 76 amino acids of IE protein results in GAL4–IE derivatives, GAL4–IE (30–1460) and GAL4–IE (77–1460), which fail to activate E4 transcription. A control experiment (Fig. 3, right) indicates that GAL4–IE (30–1460) was stably produced and present in the nucleus: Expression of GAL4–IE (30–1460) inhibited activation by GAL4–IE (1–34) on a reporter that contained GAL4-binding sites. The stable expression of GAL4–IE (30–1460) was also demonstrated by immunoblot analysis (data not shown).

The IE protein is directed to the vicinity of a promoter in vivo

A typical transcriptional activation region functions only if it can be targeted to a promoter (for review, see Ptashne 1988). We then asked whether IE protein contained the second hallmark of cellular activators, a promoter-targeting region. We tested the ability of an IE protein derivative that lacks its own activation region to direct an unrelated acidic activation region to a promoter. A similar strategy was used to show that the adenovirus E1a protein contains a promoter-targeting activity (Lilie and Green 1989).

Figure 4 shows that addition of the HSV-1 VP16 activation region restored the ability of GAL4–IE (30–1460) to stimulate transcription. Because the reporter used in this experiment, E4–CAT, lacks GAL4-binding sites, the IE portion of the fusion protein must have provided the promoter–targeting function. The level of activation by GAL4–IE–VP16 (27-fold) is comparable to that of the intact IE protein (44-fold, Fig. 3). We conclude that IE protein contains a region that can direct itself, or an unrelated activation region, to the vicinity of the promoter. We conclude further that the transcriptional activation and promoter–targeting regions of IE protein do not overlap: GAL4–IE (30–1460), which lacks the activation region, can direct the VP16 activation region to the promoter.

To begin to identify the region of the IE protein responsible for promoter targeting, we tested the ability of an IE protein deletion mutant to activate transcription of E4–CAT. Figure 4 shows that GAL4–IE (1–580) fails to activate E4–CAT transcription efficiently. Because the activation region of GAL4–IE (1–580) is intact (Fig. 2), its inability to activate E4 transcription must reflect the absence of an intact promoter–targeting region. We conclude that the IE protein promoter–targeting region is dependent upon amino acids 580–1460.

Evidence that the IE transcriptional activation region interacts with the same cellular target as an acidic activator

The amino acid sequence of the IE transcriptional activation region identified here is shown in Figure 5. Of the 34 amino acids, 8 are negatively charged, suggesting that the IE protein activation region is of the acidic class. We performed squelching experiments to support this idea. Overexpression of an activation region can inhibit the activity of another activator (Gill and Ptashne 1988; Sadowski et al. 1988; Triezenberg et al. 1988). This inhibition, termed squelching, is thought to result from titration of the cellular target of the activation region. Squelching experiments have been used to compare the targets of various transcriptional activators (Meyer et al. 1989; Berger et al. 1990; Kelleher et al. 1990; Martin et al. 1990).

We compared the target of the IE activation region with those of an acidic activator, VP16 (Triezenberg et al. 1988), and a nonacidic activator, E1a [Martin et al. 1990]. In these experiments, an intact activator is co-expressed with an excess of a protein that cannot target to that promoter. If both proteins interact with the same cellular factor, the overexpressed protein will sequester the cellular factor, inhibiting the intact activator [for review, see Ptashne 1988; Gill and Ptashne 1988; Martin et al. 1990].

In Figure 6A two fusion proteins are used: GAL4–IE (1–64) and LexA–VP16. Both of these fusion proteins can activate promoters containing the appropriate
Transcriptional activation by IE protein

Figure 3. The IE protein activation region is critical to the functioning of wild-type IE protein. **(Left)** The effect of deleting the activation region of the IE protein. A reporter CAT plasmid containing the adenovirus E4 promoter was cotransfected with a range of amounts (1 ng–1 μg) of the activator plasmid DNA indicated and diagramed below. Cells were harvested 48 hr post-DMSO shock. CAT activity was quantitated, and levels (relative to basal level) are indicated above each lane. **(Left)** The data shown for lanes 2–5 represent the maximum level of activation observed across the range of plasmid amounts transfected. These lanes represent 10 ng plasmid DNA for IE protein, and 0.1–1 μg for the GAL4 derivatives. **(Right)** A control showing that GAL4–IE [30–1460] is expressed and is functional in this experiment. A reporter CAT plasmid containing the ElbTATA box and five GAL4 sites was cotransfected with 0.3 μg of the activator plasmid GAL4–IE [1–34]. **(Lane 3)** Cotransfection of 3 μg GAL4–IE (30–1460). Transfections contained equal amounts of plasmid DNA by adding appropriate vectors. Cells were harvested 56 hr post-DMSO shock, and CAT activity is indicated above each lane.

Figure 4A shows that VP16 can inhibit activation by IE protein, whereas IE protein inhibits activation by LexA–E1a. These results are analogous to those observed previously in squelching experiments using E1a protein and VP16 (Martin et al. 1990) and further support the conclusion that the acidic IE and VP16 activation regions interact with a common cellular target.

Discussion

In general, cellular transcriptional activators are sequence-specific DNA-binding proteins. Their mode of action is highly specific; they can activate only those promoters that bear the appropriate binding sites. In contrast, the pseudorabies virus IE protein is a promiscuous activator of viral and cellular gene transcription.

Nevertheless, here we show that IE protein has the two essential features of typical cellular activators: a transcriptional activation region and a promoter–targeting region. Both of these regions are required for activation by the intact IE protein. These results indicate that IE protein activates transcription by a mechanism analogous to that of a typical cellular activator.

IE protein amino acids 1–34 comprise a relatively...
small and unusually potent transcriptional activation region. Previously identified activation regions vary from ~30 to 100 residues in length (for review, see Mitchell and Tjian 1989). Activation regions as short as that of IE protein include the 35- to 40-residue GCN4 region [Hope et al. 1988], the 32-residue region of adenovirus E1a protein [Lillie and Green 1989; Martin et al. 1990], and a 15-residue, synthetic, amphipathic α-helical peptide [Giniger and Ptashne 1987]. The strength of the IE protein activation region is unusual and comparable to that of the strongest known activator VP16 (Sadowski et al. 1988; Triezenberg et al. 1988).

The IE protein activation region is relatively acidic, having a net charge of ~8. This is comparable to that of activators for which net acidity has been shown to be the critical determinant of activation potential [GCN4, VP16, and GAL4; for review, see Mitchell and Tjian 1989]. Other activation motifs, such as prolines [CTF/NF1], glutamines [Spl; for review, see Mitchell and Tjian 1989], or a metal-binding site [E1a; Lillie and Green 1989; Martin et al. 1990], are not apparent within these 31 amino acids. Thus, it appeared likely that the IE protein activation region would use the same target as the acidic activators, an expectation supported by our squelching experiments.

A variety of studies indicate that acidic activators interact with a basic transcription factor or a protein tightly associated with such a factor [for review, see
Lewin 1990, Ptashne and Gann 1990). We have shown that the IE protein contains an acidic transcriptional activation region and is thus likely to interact with a basic transcriptional component. Abmayr et al. (1985, 1988) found that IE protein increases the rate (or extent) of formation of a complex containing TFIID and promoter DNA. This is consistent with the possibility that the IE protein activation region interacts with TFIID or a promoter-tar­geting region. In this regard, the recent studies by Crom­lish et al. (1989) are particularly relevant. These investi­gators have revealed extensive regions of homology among the activator proteins of herpes simplex, varicella zoster, and pseudorabies viruses (Cheung 1989). Surprisingly, the activation region of pseudorabies IE protein lies outside any of these highly homologous regions. A possible explanation is that the sequence requirements of acidic activators are not rigid (Ma and Ptashne 1987; Hope et al. 1988; for review, see Ptashne 1988) and, thus, may not be readily identified by ho­mology searches.

The ability of IE protein to activate transcription promiscuously would appear to lie in its promoter-targeting region. In this regard, the recent studies by Crom­lish et al. (1989) are particularly relevant. These investi­gators used DNase I footprinting experiments to show that partially purified IE protein can bind directly to multiple, apparently unrelated DNA sequences (Crom­lish et al. 1989). Moreover, addition of oligonucleotides containing these binding sites prevented IE protein from activating transcription in vitro. Our in vivo results show that IE protein contains a region capable of direct­ing a heterologous activation region to a promoter. This promoter–targeting function depends on residues located in the carboxy-terminal half of the IE protein. We propose that this region of IE protein functions by binding directly to diverse DNA sequences, thereby position­ing the potent IE transcriptional activation region within the vicinity of a wide variety of promoters. Thus, promiscuous activation by IE protein can be explained in a manner consistent with established paradigms of typical eukaryotic activators.

Materials and methods

Reporter plasmids

Each GAL4-binding site is the 17-bp oligonucleotide (MH100) described previously (Webster et al. 1988) and is inserted immedi­ately upstream of each target promoter, as indicated (Lillie and Green 1989). The E4–CAT plasmid (Lillie and Green 1989) contains Ad5 E4 sequences from 240 to +32 (relative to the transcription initiation site) inserted upstream of the CAT gene in a pSP72 vector (Promega Biotech). The ElbTATA reporter contains an oligonucleotide comprising the Elb TATA box (5'-AGGTTATATAATG-3') inserted immediately upstream of the CAT gene in pSP72 (Lillie and Green 1989). The LexA–ElbTATA reporter (pL6EC) (gift of P. Broad) has a triplicated insert of a fragment containing two LexA sites (Ebina et al. 1983) in the upstream poly linker of the ElbTATA reporter (Martin et al. 1990).

Activator plasmids

Wild-type IE protein is the 1460-amino-acid pseudorabies IE protein (Cheung 1989) expressed from the plasmid pSIE, which contains the SV40 early promoter of the pCE expression vector (Ellis et al. 1986). GAL4 (1–147) comprises GAL4 amino acids 1–147 and is expressed from plasmid pSG147 or pSG424 (Sadowski et al. 1988). GAL4–IE (pS4IE–Ddel) is IE protein amino acids 1–1460 fused in-frame to the carboxyl terminus of GAL4 (1–147). An additional four amino acids (PEFP) are expressed between GAL4 and IE and are encoded by the poly­linker of pSG424. pS4IE–Ddel was constructed by linking the Ncol–Ddel fragment of pSIE (Cheung 1989) downstream of GAL4 (1–147) at the SmaI site of pSG424. GAL4–IEΔC580, GAL4–IEΔC330, GAL4–IEΔC137, GAL4–IEA6C64, GAL4–IEΔC34, GAL4–IEΔC20 and GAL4–IEA16 are progressive 3’-BAL-31 deletions of pS4IE–Ddel.

The GAL4–IEΔN deletions are progressive 5’-BAL-31 deletions of the IE Del fragment or of GAL4–IEΔC580, fused in-frame to GAL4 (1–147). GAL4–IE (30–1460)–VP16 contains the 78 carboxy-terminal amino acids of the HSV VP16 protein fused in-frame to the carboxyl terminus of GAL4–IE (30–1460).

Transfections and CAT assays

The reporter (1 μg) and a specified amount of the activator plasmid DNA were transfected by the DEAE–dextran technique (Cato et al. 1986) into Chinese hamster ovary (CHO-DUKX) cells. Cells were maintained below 60% confluency in α-MEM plus nucleotides and were split 1:8 at 24 hr or 1:4 at 6 hr before transfection. Cells were harvested 48 or 72 hr post- DMSO shock and assayed for CAT activity as described (Gorman et al. 1982). After autoradiography of the separated acetylated chloramphenicol forms, spots were excised and radiographed.

Immunoblotting

CHO cells were transfected as described above with 10 μg of activator plasmid DNA. Cells were harvested 72 hr after DMSO shock. Lysed cell supernatant (20 μl) was electrophoresed on a polyacrylamide gel. After transfer of the separated proteins onto nitrocellulose membrane and blocking with milk solution, the proteins were incubated with α-GAL4 antibody (gift of I. Sadowski), rinsed, incubated with 125I-labeled protein A (NEN), and rinsed again. The GAL4 derivatives were visualized by autoradiography.

Acknowledgments

This work was supported by the National Institutes of Health (M.R.G.). K.F.M. is a fellow of the Jane Coffin Childs Memorial Fund for Medical Research. This investigation was also aided by a grant from the Jane Coffin Childs Memorial Fund for Medical Research.
The publication costs of this article were defrayed in part by payment of page charges. This article must therefore be hereby marked ‘advertisement’ in accordance with 18 USC section 1734 solely to indicate this fact.

References

Transcriptional activation by the pseudorabies virus immediate early protein.

K J Martin, J W Lillie and M R Green

Genes Dev. 1990, 4:
Access the most recent version at doi:10.1101/gad.4.12b.2376

References
This article cites 36 articles, 9 of which can be accessed free at:
http://genesdev.cshlp.org/content/4/12b/2376.full.html#ref-list-1

License

Email Alerting Service
Receive free email alerts when new articles cite this article - sign up in the box at the top right corner of the article or click here.