Contents

Outlook

Unifying the p73 knockout phenotypes: TAp73 orchestrates multiciliogenesis 1253
Marco Napoli and Elsa R. Flores

Research Communication

LRH-1-dependent programming of mitochondrial glutamine processing drives liver cancer 1255
Pan Xu, Maaike H. Oosterveer, Sokrates Stein, Hadrien Demagny, Dongryeol Ryu, Norman Moullan, Xu Wang, Emine Can, Nicola Zamboni, Arnaud Comment, Johan Auwerx, and Kristina Schoonjans

Research Papers

Quantitative lineage tracing strategies to resolve multipotency in tissue-specific stem cells 1261
Aline Wuidart, Marielle Ousset, Steffen Rulands, Benjamin D. Simons, Alexandra Van Keymeulen, and Cédric Blanpain

Jmj2/Kdm4 demethylases are required for expression of Il3ra and survival of acute myeloid leukemia cells 1278
Karl Agger, Satoru Miyagi, Marianne Terndrup Pedersen, Susanne M. Kooistra, Jens Vilstrup Johansen, and Kristian Helin

Genetic requirement for Mycl and efficacy of RNA Pol I inhibition in mouse models of small cell lung cancer 1289
Dong-Wook Kim, Nan Wu, Young-Chul Kim, Pei Feng Cheng, Ryan Basom, Dongkyoon Kim, Colin T. Dunn, Anastasia Y. Lee, Keebeom Kim, Chang Sup Lee, Andrew Singh, Adi F. Gazdar, Chris R. Harris, Robert N. Eisenman, Kwon-Sik Park, and David MacPherson

TAp73 is a central transcriptional regulator of airway multiciliogenesis 1300

The CENP-T/-W complex is a binding partner of the histone chaperone FACT 1313
Lisa Prendergast, Sebastian Müller, Yiwei Liu, Hongda Huang, Florent Dingli, Damaris Loew, Isabelle Vassias, Dinshaw J. Patel, Kevin F. Sullivan, and Geneviève Almouzni

(continued)
S1-DRIP-seq identifies high expression and polyA tracts as major contributors to R-loop formation
Lamia Wahba, Lorenzo Costantino, Frederick J. Tan, Anjali Zimmer, and Douglas Koshland

Sgs1’s roles in DNA end resection, HJ dissolution, and crossover suppression require a two-step SUMO regulation dependent on Smc5/6
Marcelino Bermúdez-López, María Teresa Villoria, Miguel Esteras, Adam Jarmuz, Jordi Torres-Rosell, Andres Clemente-Blanco, and Luis Aragon

Cover Multipotent basal stem cells contribute to luminal lineage expansion during postnatal development of the prostate. Shown here is an immunofluorescence analysis of a 3D whole mount of prostate epithelium 2 wk after doxycycline-dependent lineage tracing of basal stem cells, which were induced to express YFP. The tissue was stained with antibodies directed against the basal cell marker K14 (red) and YFP (green) as well as with Hoechst nuclear dye (blue). Basal stem cells [green] differentiate into both basal [green and red colocalization, yellow] and luminal [green] cell types. [For details, see Wuidart et al., p. 1261.]