Reviews

Origins, genetic landscape, and emerging therapies of small cell lung cancer
Ekaterina A. Semenova, Remco Nagel, and Anton Berns 1447

Fibroblast growth factor signaling in skeletal development and disease
David M. Ornitz and Pierre J. Marie 1463

Research Communication

Transcriptional repression by PRC1 in the absence of H2A monoubiquitylation
Ana Raquel Pengelly, Reinhard Kalb, Katja Finkl, and Jürg Müller 1487

Research Papers

β-Catenin destruction complex-independent regulation of Hippo–YAP signaling by APC in intestinal tumorigenesis
Jing Cai, Anirban Maitra, Robert A. Anders, Makoto M. Taketo, and Duojia Pan 1493

The oncogenic BRD4-NUT chromatin regulator drives aberrant transcription within large topological domains
Artyom A. Alekseyenko, Erica M. Walsh, Xin Wang, Adlai R. Grayson, Peter T. Hsi, Peter V. Kharchenko, Mitzi I. Kuroda, and Christopher A. French 1507

Structure of human MDM2 complexed with RPL11 reveals the molecular basis of p53 activation
Jiangge Zheng, Yue Lang, Qi Zhang, Di Cui, Haili Sun, Lun Jiang, Zhenhang Chen, Rui Zhang, Yina Gao, Wenli Tian, Wei Wu, Jun Tang, and Zhongzhou Chen 1524

CaV3.2 calcium channels control NMDA receptor-mediated transmission: a new mechanism for absence epilepsy

The host Integrator complex acts in transcription-independent maturation of herpesvirus microRNA 3′ ends
Mingyi Xie, Wei Zhang, Mei-Di Shu, Acer Xu, Diana A. Lenis, Daniel DiMaio, and Joan A. Steitz 1552

(continued)
The poly(A)-binding protein Nab2 functions in RNA polymerase III transcription
L. Maximilian Reuter, Dominik M. Meinel, and Katja Sträßer

Resource/Methodology

Pancreatic cancer modeling using retrograde viral vector delivery and in vivo CRISPR/Cas9-mediated somatic genome editing
Shin-Heng Chiou, Ian P. Winters, Jing Wang, Santiago Naranjo, Crissy Dudgeon, Fiona B. Tamburini, Jennifer J. Brady, Dian Yang, Barbara M. Grüner, Chen-Hua Chuang, Deborah R. Caswell, Hong Zeng, Pauline Chu, Grace E. Kim, Darren R. Carpizo, Seung K. Kim, and Monte M. Winslow

Cover Direct viral vector delivery combined with CRISPR/Cas9-mediated targeting enables somatic genome editing in the pancreas. Shown here is a fluorescently illuminated trichrome-stained section of a transgenic mouse pancreas expressing oncogenic Kras and a Cre-regulated Cas9 allele, which was injected with a lentiviral vector containing Cre-recombinase and a single-guided RNA targeting Lkb1. Red fluorescence of the stained cells highlights the widespread dysplasia that results from oncogenic Kras expression and Lkb1 deficiency (top), in contrast to the adjacent normal pancreas (bottom). [For details, see Chiou et al., p. 1576.]