Coupling 40S ribosome recruitment to modification of a cap-binding initiation factor by eIF3 subunit e

Derek Walsh and Ian Mohr

Department of Microbiology, New York University School of Medicine, New York, New York 10016, USA

40S ribosomes are loaded onto capped mRNAs via the multisubunit translation initiation factors eIF3 and eIF4F. While eIF4E is the eIF4F cap recognition component, the eIF4G subunit associates with 40S-bound eIF3. How this intricate process is coordinated remains poorly understood. Here, we identify an eIF3 subunit that regulates eIF4E modification and show that eIF3e is required for inducible eIF4E phosphorylation. Significantly, recruitment of the eIF4E kinase Mnk1 (MAPK signal-integrating kinase 1) to eIF4F depended on eIF3e, and eIF3e was sufficient to promote Mnk1-binding to eIF4F. This establishes a mechanism by which 40S ribosome loading imparts a phosphorylation mark on the cap-binding eIF4E complex that regulates selective mRNA translation and is synchronized by a specific eIF3 subunit.

Supplemental material is available for this article.

Received December 18, 2013; revised version accepted March 18, 2014.

Recruitment of 40S ribosome subunits to the mRNA 5′-terminus in eukaryotes requires a large number of translation initiation factors (eIFs) (Sonenberg and Hinnebusch 2009). Eukaryotic mRNAs have a 5′-methyl-7-GTP (m7-GTP) cap that is recognized by eIF4E, a multisubunit complex consisting of a cap-binding protein (eIF4E) and an RNA helicase (eIF4A) assembled on a large scaffold protein (eIF4G) (Fig. 1A). eIF4F assembly is regulated by eIF4E-binding proteins (4E-BPs) that competitively inhibit eIF4E from interacting with eIF4G. Phosphorylation of 4E-BPs by the kinase mTOR frees eIF4E, making it available to form an eIF4F complex. Once part of the complex, eIF4E is phosphorylated by the eIF4G-associated kinase MAPK signal integrating kinase 1 (Mnk1) or Mnk2 (Buxade et al. 2008). While Mnk2 accounts for basal eIF4E phosphorylation, Mnk1 mediates inducible phosphorylation in response to upstream p38MAPK or extracellular signal-regulated kinase (ERK) activation (Scheper et al. 2001). Phosphorylation of eIF4E regulates translation of specific mRNAs involved in cellular transformation, immune responses, and viral infection (Buric et al. 2010, Walsh and Mohr 2011, Herdy et al. 2012). eIF4G also binds polyA-binding protein [PABP], which binds the polyA tail at the mRNA 3′ end to stimulate translation of fully processed, intact mRNAs (Sonenberg and Hinnebusch 2009). eIF4F recruits ribosomes indirectly through bridging interactions with a 40S ribosome-associated complex, eIF3 (Fig. 1A, Hinnebusch 2006). Mammalian eIF3 consists of 10–13 subunits (a–m) with a core comprised of five to eight subunits, of which a, b, c, g, and h have yeast homologs (Zhou et al. 2008; Sun et al. 2011; Querol-Audi et al. 2013), although a “functional core” of subunits a, b, c, e, f, and h has been suggested (Masutani et al. 2007). As a translation initiation factor, eIF3 stimulates ternary complex (TC) recruitment to the 40S ribosome and prevents premature 60S ribosome joining, both of which require noncore eIF3 subunits (Hinnebusch 2006). However, while eIF3f binds mTOR (Harris et al. 2006) and eIF3f interacts with eIF1A in the ribosomal A site (Fraser et al. 2007), the full spectrum of functions performed by subunits of this large complex remain unknown. Here, we demonstrate that eIF3e controls eIF4E phosphorylation by regulating recruitment of the eIF4E kinase Mnk1 to the eIF4F complex. This occurs independently of upstream signaling to Mnk1 and demonstrates that eIF3 not only tethers the 40S ribosome to cap-bound eIF4F but, surprisingly, also regulates eIF4F activity. Moreover, it suggests a mechanism that allows temporal synchronization of eIF4E phosphorylation with 40S ribosome recruitment during translation initiation.

Results and Discussion

eIF3 subunits regulate eIF4E phosphorylation and Mnk1-stimulated protein synthesis

To test whether eIF3 influences eIF4F activity, an siRNA screen was executed to investigate how eIF3 subunit depletion impacts eIF4E phosphorylation, which occurs as part of the eIF4F complex (Pyronnet et al. 1999). Primary normal human dermal fibroblasts (NHDFs) were transfected with independent siRNAs targeting conserved core [a or c] or noncore [d, e, or h] eIF3 subunits, and effects on eIF4E phosphorylation were determined by isoelectric focusing (IEF) (Fig. 1B). Importantly, depletion of individual eIF3 subunits differentially suppressed eIF4E phosphorylation to varying extents. Depleting noncore subunit d or h had relatively little effect on the abundance of other eIF3 subunits examined and only weakly reduced phosphorylated eIF4E steady-state levels. In contrast, depleting the core subunit eIF3a significantly decreased eIF4E phosphorylation but also reduced the abundance of other eIF3 subunits, including eIF3c and eIF3e. This demonstrated that eIF3 as a whole influenced eIF4E phosphorylation. Evidence that eIF3a was not directly responsible for this came from depleting subunit c or e, neither of which detectably reduced eIF3a abundance but both of which suppressed eIF4E phosphorylation. Depletion of eIF3c reduced eIF3d levels, which had little effect on eIF4E phosphorylation.

© 2014 Walsh and Mohr This article is distributed exclusively by Cold Spring Harbor Laboratory Press for the first six months after the full-issue publication date (see http://genesdev.cshlp.org/site/misc/terms.xhtml). After six months, it is available under a Creative Commons License (Attribution-NonCommercial 4.0 International), as described at http://creativecommons.org/licenses/by-nc/4.0/.

Keywords: eIF4E phosphorylation; Mnk1; eIF3; ribosome recruitment; translation initiation

1Corresponding author

E-mail derek.walsh@nyumc.org

Article is online at http://www.genesdev.org/cgi/doi/10.1101/gad.236752.113.
phosphorylation, as well as eIF3e. Notably, eIF3c recruits eIF3e to the eIF3 complex (Morris-Desbois et al. 1999; Zhou et al. 2008), while eIF3e directly binds the eIF4F scaffold eIF4G (LeFebvre et al. 2006). Indeed, eIF3c and eIF3e abundance correlated closely with changes in eIF4E phosphorylation (Fig. 1B). Finally, eIF4E and PABP abundance remained unchanged in all samples (Fig. 1B), suggesting that the impact of depleting individual eIF3 subunits on levels of other eIF3 subunits may reflect specific effects on subunit association within the eIF3 complex that might influence their stability or synthesis. Overall, this established that eIF3 controlled phosphorylation of the cap-binding protein eIF4E and was consistent with a direct role for the eIF4G-binding subunit eIF3e and its recruitment by eIF3c.

While different cellular mRNAs have highly variable requirements for phosphorylated eIF4E (Furic et al. 2010), the poxvirus vaccinia virus (VacV) has a genetically and chemically well-defined dependence on both Mnk1 and eIF4E phosphorylation to synthesize its proteins and replicate (Walsh et al. 2008; Herdy et al. 2012). This provided a powerful biological readout to test whether eIF3 could control translation by regulating eIF4E phosphorylation. First, the impact of depleting eIF3 subunits on viral protein synthesis was determined by treating NHDFs with siRNAs and then mock-infecting them or infecting them with VacV. Metabolic labeling of samples showed that in control siRNA-treated cells, VacV suppressed most host protein synthesis, while predominately viral polypeptides accumulated (Fig. 2A). Depleting eIF3a, eIF3c, or eIF3e reduced 35S-Met/Cys incorporation into protein in mock- and VacV-infected cells by ~40%–60% compared with control siRNA (Figs. 2A; Supplemental Fig. S1A). In contrast, depleting eIF3d or eIF3h modestly elevated 35S incorporation by 10%–15% in both mock- and VacV-infected cells (Fig. 2A; Supplemental Fig. S1A). Notably, comparing cellular versus viral proteins synthesized in infected cells following eIF3c or eIF3e depletion, which inhibits eIF4E phosphorylation, as well as eIF3e. Notably, eIF3c recruits eIF3e to the eIF3 complex (Morris-Desbois et al. 1999; Zhou et al. 2008), while eIF3e directly binds the eIF4F scaffold eIF4G (LeFebvre et al. 2006). Indeed, eIF3c and eIF3e abundance correlated closely with changes in eIF4E phosphorylation (Fig. 1B). Finally, eIF4E and PABP abundance remained unchanged in all samples (Fig. 1B), suggesting that the impact of depleting individual eIF3 subunits on levels of other eIF3 subunits may reflect specific effects on subunit association within the eIF3 complex that might influence their stability or synthesis. Overall, this established that eIF3 controlled phosphorylation of the cap-binding protein eIF4E and was consistent with a direct role for the eIF4G-binding subunit eIF3e and its recruitment by eIF3c.
phosphorylation, revealed a greater reduction of 35S-Met/Cys incorporation into viral polypeptides [Fig. 2A]. Significantly, elf3c or elf3e depletion inhibited viral protein accumulation by at least 80%, with elf3e depletion being modestly more effective and achieving a 95% reduction [Fig. 2B; Supplemental Fig. S1B]. Finally, while growth and spread of a fluorescent reporter virus was reduced in cells upon depleting elf3 subunits a, c, or e versus d or h, cell morphology indicated that these defects in VacV replication did not result from differential cell viability (Supplemental Fig. S2). Taken together, this established that elf3 subunits a, c, and e were particularly important for efficient VacV protein synthesis and virus spread.

To determine whether suppression of VacV replication by elf3e depletion was in part due to reduced elf4e phosphorylation, NHDFs were treated with control or elf3e siRNAs and then infected with VacV in the presence of DMSO or CGP57380, a Mnk1 inhibitor. In control siRNA-treated NHDFs, CGP57380 reduced elf4e phosphorylation and suppressed VacV protein synthesis [Fig. 2C, cf. lanes 1 and 2]. In contrast, elf4e phosphorylation in NHDFs depleted of elf3e was already reduced in DMSO-treated samples [Fig. 2C, lanes 3,5] and was not further reduced upon treatment with CGP57380 [Fig. 2C, cf. lanes 3 and 4 and lanes 5 and 6]. In line with this, viral protein synthesis was not detectably reduced by CGP57380 in elf3e-depleted cells [Fig. 2C, cf. lanes 3 and 4 and lanes 5 and 6]. Similarly, while CGP57380 reduced VacV protein accumulation in control siRNA-treated samples [Fig. 2D, cf. lanes 2 and 3], Mnk1 inhibition had no effect on viral protein levels in cells treated with elf3e siRNAs [Fig. 2D, cf. lanes 6 and 7 and lanes 8 and 9]. In contrast, while elf3d depletion reduced VacV protein production, consistent with its function as an elf3 subunit, CGP57380 suppressed viral protein synthesis even further in these cells [Fig. 2D, cf. lanes 4 and 5]. Notably, elf3d depletion did not reduce elf4e phosphorylation [Fig. 1B], serving as a specificity control. Thus, elf3e depletion suppressed elf4e phosphorylation and rendered VacV protein synthesis refractory to Mnk1 inhibition. The effects of elf3e depletion on VacV protein production were greater than those of CGP57380 alone, in line with its roles as [1] an elf3 subunit and [2] a regulator of elf4e phosphorylation.

eIF3e regulates Mnk1 recruitment to eIF4F

eIF4e is derepressed by mTORC1-mediated inactivation of 4E-BPs, while upstream p38MAPK and ERK signaling stimulate the elf4e kinase Mnk1 (Sonenberg and Hinnebusch 2009). To test whether elf3e affected these upstream signal pathways that control elf4e phosphorylation, NHDFs were treated with control or elf3e siRNAs, and activation of mTORC1, p38MAPK, and ERK was monitored. Western blot analysis revealed that elf3e depletion increased phosphorylation of two mTOR substrates, 4E-BP1 and p70S6K, as evidenced by reduced mobility in SDS-PAGE [Fig. 3A]. Surprisingly, elf4e phosphorylation was reduced in elf3e-depleted NHDFs despite an increase in p38MAPK and ERK phosphorylation [Fig. 3A]. Equivalent results were observed in an established monkey cell line upon elf3e depletion, demonstrating that this was not unique to NHDFs [Fig. 3A]. As such, although upstream signal pathways normally expected to increase elf4e phosphorylation were activated, these signals were not detectably transmitted to elf4e in elf3e-depleted cells.

Figure 3. elf3e is required for Mnk1 binding to elf4e. (A) NHDFs [left panels] or African green monkey kidney cells (BSC40; right panels) were transfected with control (Ctrl) nonsilencing or elf3e siRNAs. Cell extracts were analyzed by immunoblotting with the indicated antibodies. (T) Total; (P) phosphorylated. (b) NHDFs were transfected with no siRNA, control (Ctrl) nonsilencing, or elf3e siRNAs. Soluble cell-free extracts were prepared, and elf4e and associated proteins were recovered on m7-GTP-sepharose. Cap-bound and input samples were analyzed by immunoblotting with the indicated antibodies. Mnk1a and Mnk1b are indicated with arrows.

To test whether elf3e was capable of directly modulating Mnk1 recruitment to elf4f, the effects of purified proteins on Mnk1 binding to elf4f-eLF4G complexes were assessed using an in vitro reconstituted system [Fig. 4A]. Glutathione-conjugated beads were prebound with puri-
Engaged, functionally coupling eIF4E phosphorylation to 40S recruitment. Interaction with eIF3e enables eIF4G to bind Mnk1 and facilitate eIF4E phosphorylation. Mnk1 is not yet recruited to eIF4F. (2) An eIF3-associated ribosome engages eIF4F. (3) Activates 4E-BP1, releasing eIF4E to bind eIF4G. ERK/p38MAPK are activated, but mediated control of eIF4E phosphorylation. (1) Signal activation; mTORC1 inhibited in vitro assay to measure Mnk1a binding to eIF4G. Retention of eIF4G:eIF4E complexes by GST-Mnk1a immobilized on glutathione sepharose (Glut Seph) was evaluated in the absence or presence of PABP and/or eIF3e. (B) eIF4E, eIF3e, and PABP were incubated for 1 h with GST-Mnk1a-bound beads ±300 ng of eIF4G. Input and bound samples were analyzed by immunoblotting with the indicated antibodies. (C) Purified eIF4G (150 ng) was incubated with the indicated proteins and GST-Mnk1a-bound beads for 35 min and then analyzed as in B. (D) Model for eIF3e-associated ribosome engagement eIF4F. (3) Interaction with eIF3e enables eIF4G to bind Mnk1 and facilitate eIF4E phosphorylation. This ensures eIF4E phosphorylation when an Mnk1-bound 40S ribosome is engaged, functionally coupling eIF4E phosphorylation to 40S recruitment.

Figure 4. eIF3e stimulates Mnk1a recruitment to eIF4G in vitro. (A) Reconstituted in vitro assay to measure Mnk1a binding to eIF4G. Retention of eIF4G:eIF4E complexes by GST-Mnk1a immobilized on glutathione sepharose (Glut Seph) was evaluated in the absence or presence of PABP and/or eIF3e. (B) eIF4E, eIF3e, and PABP were incubated for 1 h with GST-Mnk1a-bound beads ±300 ng of eIF4G. Input and bound samples were analyzed by immunoblotting with the indicated antibodies. (C) Purified eIF4G (150 ng) was incubated with the indicated proteins and GST-Mnk1a-bound beads for 35 min and then analyzed as in B. (D) Model for eIF3e-associated ribosome engagement eIF4F. (3) Interaction with eIF3e enables eIF4G to bind Mnk1 and facilitate eIF4E phosphorylation. This ensures eIF4E phosphorylation when an Mnk1-bound 40S ribosome is engaged, functionally coupling eIF4E phosphorylation to 40S recruitment.

fied GST-tagged human Mnk1a [the longest Mnk1 isoform, containing all regulatory domains] [Buxade et al. 2008], and its capacity to retain exogenous purified eIF4G, eIF4E, PABP, and eIF3e was evaluated. Under these conditions, eIF4E, PABP, and eIF3e did not detectably bind Mnk1a, and their recovery on GST-Mnk1a-sepharose was dependent on the addition of eIF4G to reactions (Fig. 4B, cf. lanes 5 and 6). While eIF4E and eIF4G naturally associate and are recovered with GST-Mnk1a over time (Supplemental Fig. S3), suboptimal binding conditions were created by limiting both the amount of eIF4G (<1.5 μg/mL) and the reaction time such that minimal eIF4G and eIF4E were recovered bound to GST-Mnk1a (Fig. 4C, lane 4). Significantly, while retention of eIF4E and eIF4G increased at best only slightly upon addition of PABP, supplementing binding reactions with purified eIF3e dramatically stimulated binding of eIF4G and eIF4E to GST-Mnk1a (Fig. 4C, cf. lanes 4, 5 and 6). This demonstrated that eIF3e was sufficient to stimulate recruitment of the kinase Mnk1a to eIF4G, which in turn is bound to the Mnk1a substrate eIF4E. Moreover, it suggests a model by which eIF3e couples 40S ribosome recruitment with phosphorylation of the cap-bound initiation factor eIF4F (Fig. 4D).

While its function in 40S recruitment has been studied, the potential for eIF3e to act in a regulatory capacity rather than solely as a tethering factor has not been explored. Here, we establish that eIF3e regulates recruitment of the eIF4E kinase Mnk1 to eIF4F to promote eIF4E phosphorylation, possibly by inducing changes in eIF4F conformation, which refolds in response to interactions with other proteins to initiate translation [Sonenberg and Hinnebusch 2009]. Changes in eIF4F conformation could be triggered by either stoichiometric, stable association of eIF3e with eIF4G or a dynamic, transient association of eIF3e with eIF4G. In this latter scenario, substoichiometric eIF3e amounts could impact Mnk1 binding to eIF4G. At present, we are unable to distinguish between these two possibilities. Previous studies have reported that Mnk1 binding to eIF4G responds to a number of signal pathways [Orton et al. 2004; Parra et al. 2005; Shveygert et al. 2010; Dobrikov et al. 2011, 2013]. Notably, phosphorylation of eIF4G on S1186 regulates its interaction with Mnk1 and lies near the minimal eIF3e-binding interface [residues 1015–1118] [LeFebvre et al. 2006] but far from the primary sequence determinants of Mnk1 binding [Dobrikov et al. 2011]. In addition, a phylogenetic study linking eIF4G mutations to Parkinson’s disease identified a substitution at far from the primary sequence determinants of Mnk1 binding [Dobrikov et al. 2011]. In addition, a phylogenetic study linking eIF4G mutations to Parkinson’s disease identified a substitution at far from the primary sequence determinants of Mnk1 binding [Dobrikov et al. 2011]. In addition, a phylogenetic study linking eIF4G mutations to Parkinson’s disease identified a substitution at far from the primary sequence determinants of Mnk1 binding [Dobrikov et al. 2011]. In addition, a phylogenetic study linking eIF4G mutations to Parkinson’s disease identified a substitution at far from the primary sequence determinants of Mnk1 binding [Dobrikov et al. 2011]. In addition, a phylogenetic study linking eIF4G mutations to Parkinson’s disease identified a substitution at far from the primary sequence determinants of Mnk1 binding [Dobrikov et al. 2011]. In addition, a phylogenetic study linking eIF4G mutations to Parkinson’s disease identified a substitution at far from the primary sequence determinants of Mnk1 binding [Dobrikov et al. 2011]. In addition, a phylogenetic study linking eIF4G mutations to Parkinson’s disease identified a substitution at far from the primary sequence determinants of Mnk1 binding [Dobrikov et al. 2011]. In addition, a phylogenetic study linking eIF4G mutations to Parkinson’s disease identified a substitution at far from the primary sequence determinants of Mnk1 binding [Dobrikov et al. 2011]. In addition, a phylogenetic study linking eIF4G mutations to Parkinson’s disease identified a substitution at far from the primary sequence determinants of Mnk1 binding [Dobrikov et al. 2011]. In addition, a phylogenetic study linking eIF4G mutations to Parkinson’s disease identified a substitution at far from the primary sequence determinants of Mnk1 binding [Dobrikov et al. 2011]. In addition, a phylogenetic study linking eIF4G mutations to Parkinson’s disease identified a substitution at far from the primary sequence determinants of Mnk1 binding [Dobrikov et al. 2011]. In addition, a phylogenetic study linking eIF4G mutations to Parkinson’s disease identified a substitution at far from the primary sequence determinants of Mnk1 binding [Dobrikov et al. 2011]. In addition, a phylogenetic study linking eIF4G mutations to Parkinson’s disease identified a substitution at far from the primary sequence determinants of Mnk1 binding [Dobrikov et al. 2011]. In addition, a phylogenetic study linking eIF4G mutations to Parkinson’s disease identified a substitution at far from the primary sequence determinants of Mnk1 binding [Dobrikov et al. 2011]. In addition, a phylogenetic study linking eIF4G mutations to Parkinson’s disease identified a substitution at far from the primary sequence determinants of Mnk1 binding [Dobrikov et al. 2011]. In addition, a phylogenetic study linking eIF4G mutations to Parkinson’s disease identified a substitution at far from the primary sequence determinants of Mnk1 binding [Dobrikov et al. 2011]. In addition, a phylogenetic study linking eIF4G mutations to Parkinson’s disease identified a substitution at far from the primary sequence determinants of Mnk1 binding [Dobrikov et al. 2011]. In addition, a phylogenetic study linking eIF4G mutations to Parkinson’s disease identified a substitution at far from the primary sequence determinants of Mnk1 binding [Dobrikov et al. 2011]. In addition, a phylogenetic study linking eIF4G mutations to Parkinson’s disease identified a substitution at far from the primary sequence determinants of Mnk1 binding [Dobrikov et al. 2011]. In addition, a phylogenetic study linking eIF4G mutations to Parkinson’s disease identified a substitution at far from the primary sequence determinants of Mnk1 binding [Dobrikov et al. 2011]. In addition, a phylogenetic study linking eIF4G mutations to Parkinson’s disease identified a substitution at far from the primary sequence determinants of Mnk1 binding [Dobrikov et al. 2011].
and specific mRNA translation [Asano et al. 1997; Rasmussen et al. 2001; Mayeur and Hershey 2002, Udagawa et al. 2008; Grzmił et al. 2010; Chiluizza et al. 2011; Suo et al. 2011; Neussiedler et al. 2012]. Indeed, eIF4E phosphorylation exerts differential effects on mRNA translation and plays important roles in cell proliferation, transformation, immune responses, and viral infection [Walsh and Mohr 2004, 2011; Wendel et al. 2007; Furic et al. 2010; Ueda et al. 2010; Herdy et al. 2012]. Notably, the gene encoding eIF3e is a frequent site of mouse mammary tumor virus integration, and the resulting truncated protein could influence eIF4E phosphorylation and possibly tumorigenesis in mice [Chiluizza et al. 2011]. In addition, two distinct eIF3 complexes exist in cells defined by the presence or absence of eIF3e [Zhou et al. 2005; Sha et al. 2009]. Instead of mRNAs differentially responding to eIF4E phosphorylation per se, eIF3e may dictate which eIF3-bound eIF4F complexes can recruit Mnk1 and could create distinct populations of Mnk1-responsive and Mnk1-unresponsive mRNA targets, potentially explaining why all capped mRNAs are not equally affected by eIF4E phosphorylation. Many eIF3 subunits have intrinsic RNA-binding activity [Hinnebusch 2006] that could discriminate among mRNAs and control their differential response to eIF4E phosphorylation.

A diverse array of cellular signaling pathways rapidly converges on the translation system, phosphorylating and activating a multitude of eIFs seemingly en masse [Sonenberg and Hinnebusch 2009]. Although upstream mTOR, p88MAPK, and ERK signaling pathways are stimulated, these cues are not transmitted to eIF4E in eIF3e-depleted cells. Thus, additional regulation exists downstream from signal activation in which some eIFs ensure temporally correct assembly of the translation initiation machinery. In addition to tethering the 40S ribosome to eIF4F, eIF3e may also possess an intrinsic regulatory capacity to prevent premature eIF4E phosphorylation until an eIF3-bound ribosome has been engaged [Fig. 4D]. This further illustrates how 40S binding recruits a kinase to impart a regulatory mark on cap-bound initiation factors. Moreover, it suggests how the deposition of coding marks in response to regulated interactions among cellular translation initiation factors might regulate selective mRNA translation [Xue and Barna 2012].

Materials and methods

Additional methods are described in the Supplemental Material.

m7-GTP chromatography and in vitro binding assays.

m7-GTP chromatography was described previously [Walsh and Mohr 2006]. Proteins were purified from clarified, RNase A-treated cell extracts over NiNTA [His-eIF3e or His-PABP] or glutathione (GST-Mnk1a) columns as described [Walsh and Mohr 2006]. Purified Flag-tagged eIF4G was a gift of Dr. Simon Morley. For binding reactions, 10-μM packed bed volumes of glutathione sepharose 4B were washed three times in 500-μL reaction buffer [RB; 50 mM HEPES-KOH at pH 7.2, 1 mM EDTA, 20 mM NaF, 75 mM KCl, 0.66 mM Na2VO4, 25 mM β-glycerophosphate, 3 mM MgCl2, 5% glycerol [v/v]]. 1× complete mini-EDTA free protease inhibitor tablet [Roche]]. Beads were blocked in RB+5% bovine serum albumin for 1 h at room temperature, incubated overnight at 4 °C in RB containing 600 ng of purified GST-Mnk1a, and then washed three times in RB+0.125% NP40. Reactions were prepared in tubes containing 200 μL of RB+0.125% NP40. Flag-eIF4G (150 or 300 ng) was mixed with 5 μL of clarified protease inhibitor-treated and RNase A-treated bacterial extract containing human eIF4E (~50 ng/μL) [Walsh and Mohr 2006] to which 1 μg of either PABP or eIF3e was added. Where proteins were omitted from reactions, an equal volume of dialysis buffer was added. After mixing, input samples were taken, and binding reactions were initiated by adding 190 μL to washed glutathione sepharose preloaded with GST-Mnk1a and rocking at 4 °C. Reactions were stopped by centrifugation, and the pellet beads were washed four times in RB+0.125% NP40 and boiled in sample buffer.

Acknowledgments

We thank Simon Morley, Christopher Fraser, John Hershey, Robert Schneider, Christopher Proud, and Bernard Moss for reagents. This work was supported by National Institutes of Health grants R21AI058330 to D.W. and R01AI07398 and GM056927 to I.M.

References


Coupling 40S ribosome recruitment to modification of a cap-binding initiation factor by eIF3 subunit e

Derek Walsh and Ian Mohr

Genes Dev. 2014, 28:
Access the most recent version at doi:10.1101/gad.236752.113

Supplemental Material
http://genesdev.cshlp.org/content/suppl/2014/04/15/28.8.835.DC1

References
This article cites 39 articles, 24 of which can be accessed free at:
http://genesdev.cshlp.org/content/28/8/835.full.html#ref-list-1

Creative Commons License
This article is distributed exclusively by Cold Spring Harbor Laboratory Press for the first six months after the full-issue publication date (see http://genesdev.cshlp.org/site/misc/terms.xhtml). After six months, it is available under a Creative Commons License (Attribution-NonCommercial 4.0 International), as described at http://creativecommons.org/licenses/by-nc/4.0/.

Email Alerting Service
Receive free email alerts when new articles cite this article - sign up in the box at the top right corner of the article or click here.