Contents

Perspective

O-GlcNAcylation of a circadian clock protein: dPER taking its sweet time 415
Axel C.R. Diernfellner and Michael Brunner

Review

On PAR with PARP: cellular stress signaling through poly(ADP-ribose) and PARP-1 417
Xin Luo and W. Lee Kraus

Research Communications

ATRX-mediated chromatin association of histone variant macroH2A1 regulates α-globin expression 433
Kajan Ratnakumar, Luis F. Duarte, Gary LeRoy, Dan Hasson, Daniel Smeets, Chiara Vardabasso, Clemens Bönisch, Tianying Zeng, Bin Xiang, David Y. Zhang, Haitao Li, Xiaowo Wang, Sandra B. Hake, Lothar Schermelleh, Benjamin A. García, and Emily Bernstein

EZH2 couples pancreatic regeneration to neoplastic progression 439
Jon Mallen-St. Clair, Rengin Soydaner-Azeloglu, Kyoung Eun Lee, Laura Taylor, Alexandra Livanos, Yuliya Pylayeva-Gupta, George Miller, Raphaël Margueron, Danny Reinberg, and Dafna Bar-Sagi

Research Papers

The splicing regulator Rbfox2 is required for both cerebellar development and mature motor function 445OA

AMD1 is essential for ESC self-renewal and is translationally down-regulated on differentiation to neural precursor cells 461
Dawei Zhang, Tianyun Zhao, Haw Siang Ang, Peini Chong, Ryotaro Saiki, Kazuei Igarashi, Henry Yang, and Leah A. Vardy

The MuvB complex sequentially recruits B-Myb and FoxM1 to promote mitotic gene expression 474
Subhashini Sadasivam, Shenghua Duan, and James A. DeCaprio

A role for O-GlcNAcylation in setting circadian clock speed 490
Eun Young Kim, Eun Hee Jeong, Sujin Park, Hyun-Jeong Jeong, Isaac Edery, and Jin Won Cho

(continued)
Beyond tRNA cleavage: novel essential function for yeast tRNA splicing endonuclease unrelated to tRNA processing
Nripesh Dhungel and Anita K. Hopper

Identification of a target cell permissive factor required for contact-dependent growth inhibition (CDI)
Elie J. Diner, Christina M. Beck, Julia S. Webb, David A. Low, and Christopher S. Hayes

OA Open Access paper

Cover
Differential expression of the Rbfox splicing regulatory proteins regulates cerebellar development and function. Shown here is an immunofluorescence analysis of wild-type mouse cerebellum using antibodies directed against Rbfox1 (green), which is expressed in granule cell neurons, and Rbfox2 (dark blue), which is expressed in interneurons. Purkinje cells express both proteins (light blue). One Purkinje cell has been filled with the neuorotrace biocytin (reddish orange) to visualize its axon and dendritic arbor. Rbfox1+/-/Rbfox2-/- mutant mice exhibit defects in cerebellar development with ectopic Purkinje cells and severely malformed neural processes. Loss of Rbfox1 and Rbfox2 in mature Purkinje cells leads to defects in sodium channel splicing and irregular firing patterns. (For details, see Gehman et al., p. 445.)