Alzheimer disease causes the gradual deterioration of cognitive function, including severe memory loss and impairments in abstraction and reasoning. Understanding the complex changes that occur in the brain as the disease progresses—including the accumulation of amyloid plaques and neurofibrillary tangles—is critical for the development of successful therapeutic approaches.

Written and edited by leading experts in the field, this volume includes contributions covering all aspects of Alzheimer disease, from our current molecular understanding to therapeutic agents that could be used to treat and, ultimately, prevent it. Contributors discuss the biochemistry and cell biology of amyloid β-protein precursor (APP), tau, presenilin, β-secretase, and apolipoprotein E and their involvement in Alzheimer disease. They also review the clinical, neuropathological, imaging, and biomarker phenotypes of the disease; genetic alterations associated with the disorder; and epidemiological insights into its causation and pathogenesis.

This comprehensive volume, which includes discussions of therapeutic strategies that are currently used or under development, is a vital reference for neurobiologists, cell biologists, pathologists, and other scientists pursuing the biological basis of Alzheimer disease, as well as investigators, clinicians, and students interested in its pathogenesis, treatment, and prevention.

2011, 511 pp., illus. (63 4C & 9 B&W), index
Hardcover $135

Contents

Preface
Deciphering Alzheimer Disease
Dennis Selkoe, Eckhard Mandelkow, and David Holtzman
The Clinical Problem of Symptomatic Alzheimer Disease and Mild Cognitive Impairment
Rewon Taraavash and David M. Holtzman
The Neuropsychological Profile of Alzheimer Disease
Sandra Weintraub, Alissa H. Wicklund, and David P. Salmon
Neuropathological Alterations in Alzheimer Disease
Alberto Serrano-Pozo, Matthew P. Froch, Eliezer Masliah, and Bradley T. Hyman
Brain Imaging in Alzheimer Disease
Káth A. Johnson, Nick C. Fox, Reita A. Sperling, and William E. Kuklin
Fluid Biomarkers in Alzheimer Disease
Kay Blevins, Henrik Zetterberg, and Anne M. Fagan
Epidemiology of Alzheimer Disease
Richard Mayer and Yaakov Stern
Biochemistry and Cell Biology of Tau Protein in Neurofibrillary Degeneration
Ena-Maria Mandelkow and Eckhard Mandelkow
Frontotemporal Dementia: Implications for Understanding Alzheimer Disease
Michel Goedert, Bernadino Ghezzi, and Maria Grazia Spillantini

Biochemistry of Amyloid β-Protein and Amyloid Deposits in Alzheimer Disease
Colin L. Masters and Dennis J. Selkoe
Trafficking and Proteolytic Processing of APP
Christian Haass, Christoph Karrer, Carpel Thalner, and Sangram Sudhakar
Physiological Functions of APP Family Proteins
Ulrike C. Müller and Fumi Zheng
The Genetics of Alzheimer Disease
Puddephat E. Tanzi
Presenilins and β-Secretase: Structure, Function, and Role in Alzheimer Disease
Bart De Strooper, Takeki Iwatsubo, and Michael S. Wolfe
Apolipoprotein E and Apolipoprotein E Receptors: Normal Biology and Roles in Alzheimer Disease
David M. Holtzman, Joachim Herz, and Guejun Bu
Animal Models of Alzheimer Disease
Frank M. LaFerla and Kim N. Green
Neurotoxicity of Amyloid β-Protein: Synaptic and Network Dysfunction
Lennart Mucke and Dennis J. Selkoe
Inflammation in Alzheimer Disease—A Brief Review of the Basic Science and Clinical Literature
Tony Wyss-Coray and Joseph Rogers

The Ubiquitin–Proteosome System and the Autophagic–lysosomal System in Alzheimer Disease
Yasuo Ihara, M CONSINE-Kashihara, and Ralph Nixon
Proteolytic Degradation of Amyloid β-Protein
Takashi Noda and Malcolm A. Leisring
Neurovascular Dysfunction and Faulty Amyloid β-Peptide Clearance in Alzheimer Disease
Abhay P. Sengupta, Robert D. Bell, and Berislav V. Zlokovic
Treatment Strategies Targeting Amyloid β-Protein
David Schub, Giorghio S. Basi, and Menelas N. Pangalis
Developing Therapeutic Approaches to Tau, Selected Kinases, and Related Neuronal Protein Targets
Virginia M.-Y. Lee, Kurt R. Brunden, Michael Fustin, and John Q. Trojanowski
Symptomatic and Nonamyloid/Tau-Based Pharmacologic Treatment for Alzheimer Disease
Paul S. Aisen, Jeffrey Cummings, and Lon S. Schneider
Alzheimer Disease in 2020
David M. Holtzman, Eckhard Mandelkow, and Dennis J. Selkoe

Index

ISBN 978-1-936113-44-6

www.cshpress.org
Don’t miss the premier forum for the latest breakthroughs bringing together over 17,000 attendees from over 60 countries. More than 6,000 proffered papers and hundreds of invited talks from leading experts will be presented, covering the full spectrum of cancer research, including basic, translational, clinical, and population research.

NEW in 2012:

- A revised format for the presentation of accepted clinical trials
- New session series titled Current Concepts and Controversies in Diagnostics, Therapeutics, and Prevention
- New poster session on clinical trials in progress
- A regulatory track with sessions on regulatory science and science policy
Leading Source for Research Antibodies, siRNAs/shRNAs, Lentiviral Particles and Transfected Lysates

siRNA/shRNA Plasmid and Lentiviral Particle gene silencers targeted to 20,122 human and 24,247 mouse genes representing all (100%) known human and mouse genes.

Over 3,375 human and 3,210 mouse transfected lysates for western blot antibody evaluation.
Do you analyze microRNA from serum and plasma?

Choose LNA™ for superior sensitivity

Exiqon’s miRCURY LNA™ Universal RT microRNA PCR system provides the sensitivity needed to detect microRNA in small and difficult samples such as bio-fluids and FFPE:

- **Broad coverage.** Profiling of 742 microRNAs using only 40ng total RNA — no need to pre-amplify
- **Superior sensitivity.** Quantify individual microRNAs from as little as 1 pg total RNA
- **High flexibility.** Primer sets available in miRNAome panels, custom 96 & 384 well panels and as individual assays

Did you know:
The system is based on Exiqon’s Locked Nucleic Acid (LNA™) technology resulting in unmatched sensitivity and specificity.

Graph: Profile of 358 microRNAs from just 35µL serum
Colored dots: Highly expressed microRNAs in serum

Get guidelines & learn more at www.exiqon.com
Angiogenesis is the process by which new blood vessels are generated from preexisting vessels. It is vital for proper embryonic development, patterning of the vascular system, and wound healing. It is rate limiting in cancer progression, because the formation of new blood vessels is essential for growth and survival of tumors. Written and edited by experts in the field, this volume reviews the mechanisms of angiogenesis that operate in normal development and in diseases such as cancer. The contributors review the biology of endothelial cells, describing the specific roles of tip and stalk cells in vessel sprouting and lumen formation. They discuss the key angiogenic regulators (e.g., vascular endothelial growth factor [VEGF]), as well as antiangiogenic agents including microRNAs, thrombospondins, and smadphorins. Therapeutic approaches that target pathological angiogenesis, such as the ongoing clinical trials of anti-VEGF drugs, are also covered.

This volume, which includes discussions of other vascular dysfunctions (e.g., arteriovenous malformations) and comparisons between the blood vascular system and the lymphatic system, is a vital reference for developmental and cancer biologists, as well as anyone seeking to understand the biology and pathology of the vascular system.

2011, 522 pp., illus. (62 4C and 11 B&W), index
Hardcover $135

CONTENTS

Preface

ENDOTHELIAL CELLS. ANGIOGENESIS

Endothelial Cell Heterogeneity
William C. Arvid

Human Endothelial Progenitor Cells
Mervin C. Yoder

VEGF-Directed Blood Vessel Patterning: From Cells to Organisms
Victoria L. Branch

VEGF and Notch in Tip and Stalk Cell Selection
Rafael Blanco and Holger Gerhardt

Tips, Stalks, Tubes: Notch-Mediated Cell Fate Determination and Mechanisms of Tubulogenesis during Angiogenesis
Jennifer J. Tung, Ian W. Tattersall, and Jan Kitajewska

Vascular Lumen Formation
Eckhard Lammer and Jennifer Aznich

miRNAs as Modulators of Angiogenesis
Shira Landthörner-Eger, Isabelle Moutel, and William C. Sessa

LYMPHANGIOGENESIS

Myeloid Cells and Lymphangiogenesis
Adrian Zunser and Gerhard Christofori

The New Era of the Lymphatic System: No Longer Secondary to the Blood Vascular System
Inbo Chai, Sunjin Lee, and Young-Kwon Hong

VASCULAR DEVELOPMENT

Vascular Development in the Zebrafish
Aniket V. Gore, Kathryn Monza, Young R. Cha, Wei-jun Pan, and Brent M. Weinstein

Molecular Parallels between Neural and Vascular Development
Anne Eichmann and Jan-Lenn Thomas

ANGIOGENESIS STIMULATORS AND INHIBITORS

Signal Transduction by Vascular Endothelial Growth Factor Receptor
Sina Kock and Lena Clausen-Webb

Vascular Hyperpermeability: Angiogenesis, and Stromal Generation
Janice A. Nagy, Ana M. Dvorak, and Harold F. Dvorak

PIGF: A Multitasking Cytokine with Disease-Limited Activity
Mike Dewachter and Peter Carmeliet

The Complex Role of Angiopoietin-2 in the Angiopoietin-1/2 Signaling Pathway
Gavin Thrush and Christopher Daly

Molecular Basis for the Regulation of Angiogenesis by Thrombospondin-1 and -2
Patrick R. Lawler and Jack Lawler

Senaphorins in Angiogenesis and Tumor Progression
Gera Neufeld, Adi D. Sabag, Noa Robinovitz, and Olika Kesler

VASCULAR PATHOLOGY

Tumor Endothelial Cells
Andrew C. Dudley

Infinite Hemangioma—Mechanism(s) of Drug Action on a Vascular Tumor
Shoshana Gruenberger and Joyce Biehoff

Endothelial Cell-to-Cell Junctions: Adhesion and Signaling in Pathology and Pathobiology
Maria Grazia Lampugnani

av Integrins in Angiogenesis and Cancer
Sara M. Wad and David A. Cheresh

Vascular Normalization as a Therapeutic Strategy for Malignant and Nonmalignant Disease
Shim Goel, Andis Hsu-Kir Wong, and Rakesh K. Jain

Antiangiogenic Therapy for Ischemic Retinopathies
Morteza A. Zayat, Paolo S. Silva, Jennifer R. Sun, and Lloyd Paul Aiello

Angiogenic Factors in Preeclampsia and Related Disorders
Ana Sofia Cerdeira and Ana António Karmamunchi

The Role of the Tumor Microenvironment in Regulating Angiogenesis
Randolph S. Warnick

Common Polymorphisms in Angiogenesis
Michael S. Rogers and Robert J. D’Amore

VASCULAR ANOMALIES

Arteriovenous Malformation: and Other Vascular Malformation Syndromes
Kevin J. Whitehead, Matthew C. P. Smith, and Dean Y. Li

Vascular Anomalies: From Genetics toward Models for Therapeutic Trials
Melanie Ulrichová, Lawrence M. Boven, and Mirikka Viklund

CLINICAL APPLICATIONS, EVALUATIONS

Anti-VEGF Therapies in the Clinic
Kellen L. Meadows and Herbert L. Hurwitz

The VEGF Pathway in Cancer and Disease: Responses, Resistance, and the Path Forward
Mark W. Kieran, Raghu Kalluri, and Yeon-Jae Cho

Index
Edited by Frederic D. Bushman, University of Pennsylvania School of Medicine, Gary J. Nabel, NIAID, National Institutes of Health, and Ronald Swanstrom, University of North Carolina at Chapel Hill

The worldwide AIDS epidemic makes research on HIV, the disease processes it induces, and potential HIV therapies among the most critical in biomedical science. Furthermore, the basic biology of HIV infections provides a model for a more general understanding of retroviruses and their hosts.

Written and edited by experts in the field, this volume provides a comprehensive review of HIV research, covering everything from the pathogenesis of HIV infection to prevention. Contributors explore the origins and evolution of HIV, the HIV replication cycle, host–virus interactions, host immune responses, and HIV transmission. Vaccines, cell and gene therapies, antiretroviral drugs, microbicides, and behavioral strategies for the treatment and prevention of HIV infections are also explored.

This volume, which includes discussions of social and economic factors that affect HIV transmission and treatment, is an essential reference for virologists, cell and molecular biologists, and immunologists, as well as epidemiologists, physicians, and other public health professionals.

2011, 572 pp., Illus. (95 4C and 4 B&W), index
Hardcover $135
ISBN 978-1-93613-40-8