Contents

Perspectives
A firm grip does not always pay off: a new Phact(r) 4 integrin signaling 1
Zhiqi Sun and Reinhard Fässler

The enemy within: intronic miR-26b represses its host gene, ctdsp2, to regulate neurogenesis 6
Jinju Han, Ahmet M. Denli, and Fred H. Gage

Reviews
A decade of 3C technologies: insights into nuclear organization 11
Elzo de Wit and Wouter de Laat

Research Communications
Intronic miR-26b controls neuronal differentiation by repressing its host transcript, ctdsp2 25
Holger Dill, Bastian Linder, Alexander Fehr, and Utz Fischer

Polyplodization of glia in neural development links tissue growth to blood–brain barrier integrity 31OA
Yingdee Unhavaithaya and Terry L. Orr-Weaver

PRC2 directly methylates GATA4 and represses its transcriptional activity 37
Aibin He, Xiaohua Shen, Qing Ma, Jingjing Cao, Alexander von Gise, Pingzhu Zhou, Gang Wang, Victor E. Marquez, Stuart H. Orkin, and William T. Pu

Research Papers
Spatial arrangement of an RNA zipcode identifies mRNAs under post-transcriptional control 43
Vivek L. Patel, Somdeb Mitra, Richard Harris, Adina R. Buxbaum, Timothée Lionnet, Michael Brenowitz, Mark Girvin, Matthew Levy, Steven C. Almo, Robert H. Singer, and Jeffrey A. Chao

Cell detachment activates the Hippo pathway via cytoskeleton reorganization to induce anoikis 54
Bin Zhao, Li Li, Lloyd Wang, Cun-Yu Wang, Jindan Yu, and Kun-Liang Guan

Phactr4 regulates directional migration of enteric neural crest through PP1, integrin signaling, and cofilin activity 69
Ying Zhang, Tae-Hee Kim, and Lee Niswander

Schizosaccharomyces pombe Ccq1 and TER1 bind the 14-3-3-like domain of Est1, which promotes and stabilizes telomerase–telomere association 82
Christopher J. Webb and Virginia A. Zakian

(continued)
Cover Phactr4 regulates enteric neural crest cell migration in the developing mouse embryo. Shown here is an immunofluorescence analysis of a Phactr4 mutant mouse enteric neural crest cell using antibodies directed against Phactr4 (green) and the F-actin marker phalloidin (red). Cells were stained with Hoechst dye to visualize nuclei (blue). Phactr4 mutant enteric neural crest cells show defects in collective cell migration due to altered integrin–FAK–ROCK–cofilin activity, leading to hypogangliosis of the embryonic gut and a Hirschsprung disease-like phenotype. (For details, see Zhang et al., p. 69.)