Context-specific α-to-β-cell reprogramming by forced Pdx1 expression

Yu-Ping Yang,1 Fabrizio Thorel,2 Daniel F. Boyer,1 Pedro L. Herrera,2 and Christopher V.E. Wright1,3

1Vanderbilt University Program in Developmental Biology, Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA; 2Department of Cell Physiology and Metabolism, University of Geneva Faculty of Medicine, CH-1211 Geneva 4, Switzerland

Using single transcription factors to reprogram cells could produce important insights into the epigenetic mechanisms that direct normal differentiation, or counter inappropriate plasticity, or even provide new ways of manipulating normal ontogeny in vitro to control lineage diversification and differentiation. We enforced Pdx1 expression from the Neurogenin-3-expressing endocrine commitment point onward and found during the embryonic period a minor increased β-cell allocation with accompanying reduced α-cell numbers. More surprisingly, almost all remaining Pdx1-containing glucagon/Arx-producing cells underwent a fairly rapid conversion at postnatal stages, through glucagon–insulin double positivity, to a state indistinguishable from normal β cells, resulting in complete α-cell absence. This α-to-β conversion was not caused by activating Pdx1 in the later glucagon-expressing state. Our findings reveal that Pdx1 can work single-handedly as a potent context-dependent autonomous reprogramming agent, and suggest a postnatal differentiation evaluation stage involved in normal endocrine maturation.

Supplemental material is available for this article.

Received April 27, 2011; revised version accepted July 5, 2011.

A major hurdle for cell replacement-based diabetes therapy is the difficulty of supplying vast numbers of functioning insulin-producing β cells. One method could be through the reprogramming of alternative cell types. While this process might be easier with closely lineage-related cells, even substantially different cells may be susceptible [e.g., Zhou et al. 2008]. Recent studies reveal significant plasticity between pancreatic α and β cells under certain induced conditions, implying a potential route to β cells through α cells. In a near-total β-cell destruction and regeneration model in adult mice, a proportion of new β cells were produced from α cells via a bihormonal glucagon/insulin+ (Gcg/Ins+) transitional state (Thorel et al. 2010). The interconversion presumably occurs in response to a combination of the physiological need to replenish β cells and regeneration-induced stress, raising questions as to the local or systemic signals triggered by such lesions. Direct superimposition of a pro-β-lineage condition was reported when Pdx4 expression was forced in pancreatic or endocrine progenitors or in embryonic α cells to redirect endocrine differentiation or coax pre-existing α cells into β cells. The converted cells seemed similar to normal β cells and temporarily improved glycemia under induced diabetes, although the effect was superseded by uncontrolled α-cell neogenesis and fatality caused by extreme hyperglycemia (Collombat et al. 2009). These studies on the ability of a single lineage-allocating transcription factor to sustain complete cell fate conversion suggest that similar analyses for other transcription factors could be insightful. Determining which factors induce specific types of lineage reprogramming, as well as the repertoire of cellular competence states amenable to fate switching, could lead to pharmacological intervention to activate such factors in vivo, or to improved differentiation of embryonic stem cells to β cells.

Clues to the fate-instructing capacity of Pdx1 as a β-cell selector are inferred from its enriched expression in embryonic and mature β cells. Ectopic Pdx1 alone can induce incomplete reprogramming of liver or pancreatic acinar cells [e.g., Ferber et al. 2000; Heller et al. 2001]. A synergistic effect between Pdx1, Neurog3, and MafA was observed when acinar cells were converted into β-like cells [Zhou et al. 2008], which inefficiently ameliorated hyperglycemia caused by loss of endogenous β cells, perhaps because the reprogrammed cells did not assemble into islet-like clusters. Rather than triggering a redirection into endocrine cells, forced Pdx1 expression in Ptfaa-expressing cells caused late stage acinar-to-ductal hyperplasia [Miyatsuka et al. 2006]. While these studies suggest that Pdx1 alone is contextually sufficient to induce partial trans-differentiation or trans-determination, little is known about how different competence states affect the response to this single factor.

Here, we report on the previously unknown sufficiency for Pdx1 as a potent regulator of endocrine lineage allocation and maintenance of the mature state. With Pdx1 expression enforced from the Neurog3+ endocrine progenitor state onward, two periods of dominant lineage redirection occurred: [1] during early organogenesis, a minor reproducible reduction in cells directed to the α fate, and [2] a surprising peri/postnatal redirection of Pdx1-expressing α cells, with rapid reprogramming into Ins+ cells that are indistinguishable from normal β cells. The delayed conversion occurred despite α cells having expressed exogenous Pdx1 from their endocrine commitment point onward, suggesting the possibility of a cryptic chromatin-priming effect. In contrast, exogenous Pdx1 in Gcg+ embryonic or adult α cells suppressed Gcg expression but did not induce α/β fate switching. Our findings reveal differential α-to-β plasticity between endocrine progenitors and hormone-secreting cells in response to Pdx1. We speculate on the epigenetic ramifications of these differential lineage-switching findings.

[Keywords: pancreas; endocrine progenitors; α and β cells; reprogramming, Pdx1]

Corresponding author.

E-mail Chris.Wright@vanderbilt.edu.

Article is online at http://www.genesdev.org/cgi/doi/10.1101/gad.16875711.

1Department of Cell Physiology and Metabolism, University of Geneva Faculty of Medicine, CH-1211 Geneva 4, Switzerland

2Department of Cell and Developmental Biology, Vanderbilt University Program in Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA

3Corresponding author.
Results and Discussion

Exogenous Pdx1 expression in endocrine progenitors

Forced “constitutive” Pdx1 expression was derived from a CAG-CAT-Pdx1 allele [Miyatsuka et al. 2006] via a BAC transgene driving Cre from Neurog3 regulatory elements [Neurog3^{TgBAC-Cre}] (Schonhoff et al. 2004). Neurog3^{TgBAC-Cre}-mediated CAT excision led to Flag-tagged Pdx1 (FlagPdx1) production in Neurog3+ descendants from the ubiquitously active CAG promoter [Fig. 1A]. We compared tissues from Neurog3^{TgBAC-Cre};CAG-CAT-Pdx1; R26R^{EYFP} mice (referred to as Neurog3^{Cre-Pdx1OE} hereafter) with those from Neurog3^{TgBAC-Cre};R26R^{EYFP} littermate controls.

Two key criteria were evaluated for Neurog3-dependant activation of CAG-CAT-Pdx1. First, selective FlagPdx1 production within endocrine cells was confirmed by Flag immunostaining, with signal only in Neurog3^{Cre-Pdx1OE} pancreas, from embryonic day 16.5 (E16.5) to postnatal stages [Fig. 1B–E]. Second, FlagPdx1 immunodetection with Pdx1 antibodies labeled cell types that normally do not express Pdx1 at high levels [Pdx1^{hi}]. A large increase occurred in the number of Pdx1^{hi} cells in E14.5 Neurog3^{Cre-Pdx1OE} pancreatic epithelium compared with equivalent control tissue [Fig. 1F,G]. Ectopic Pdx1 was detected in non-β/ non-δ endocrine cells [i.e., in α, PF, and e cells]. We found Pdx1^{hi} Gcg+ α cells in postnatal day 1 (P1) Neurog3^{Cre-Pdx1OE} pancreas, while control α cells were Gcg-Pdx1− (Fig. 1H,I). This evidence demonstrates a spatiotemporally defined system for endocrine–progenitor-selective exogenous Pdx1 expression in the Neurog3^{Cre-Pdx1OE} pancreas.

Progressive reduction of α cells in the Neurog3^{Cre-Pdx1OE} pancreas

Global glucose homeostasis and the overall size and outward appearance of the pancreas in Neurog3^{Cre-Pdx1OE} mice were similar to controls [Supplemental Fig. 2]. However, a drastic Gcg+ cell loss (>99%) was found in the adult pancreas, while other hormone-producing cell types were similar in number and location [Fig. 1E, Supplemental Fig. 1]. The numbers of α [Gcg+] or β [Ins+] cells were quantified at key stages. At each stage, the combined number of α and β cells (α + β) was similar between Neurog3^{Cre-Pdx1OE} and control, despite a significant difference in the α versus β representation [Fig. 2I, Supplemental Fig. 3]. This observation strongly suggests a scenario of lineage diversion, wherein one cell population expands at the expense of the other under a constant total number. We identified two phases of lineage conversion that ultimately contributed to a complete α-cell loss by the early adult stage. First, a significant decrease in Gcg+ cell number [control 47% representation reduced to 35%] and accompanying increase in Ins+ cells was detected in the E16.5 Neurog3^{Cre-Pdx1OE} pancreas, shortly after the peak of Neurog3 expression at approximately E15 (Gu et al. 2002). Coexpression of Ins and α-cell-specific factors, such as Arx, suggesting an early movement toward β-cell-directed transdifferentiation, was not detected at this stage [data not shown]. The early phase shift in α/β representation suggests that exogenous Pdx1 biases the behavior of a fraction of early endocrine progenitors, increasing flux toward the β lineage, disfavoring the α lineage. The reason for only 25% of Gcg+ cells being affected could be related to nonuniformity in Pdx1 accumulation within Neurog3+ progenitor cells and/or their immediate progeny.

Second, a major progressive loss of Gcg+ cells concurrent with increased Ins+ numbers was detected at P1–P12 [Fig. 2I]. The number of Gcg+ cells in the P1 Neurog3^{Cre-Pdx1OE} pancreas was 32% of controls, suggesting that loss of Gcg expression in some cells had been initiated around birth. By P12, few Gcg+ cells were present, which were usually Gcg^{lo} by immunodetection [Fig. 2H]. Importantly, numerous mantle-located Gcg+Ins+ cells were detected [Fig. 2D,F], representing intermediate state α cells undergoing conversion. The presence of Gcg+Ins+ cells in Neurog3^{Cre-Pdx1OE} suggests that suppression of Gcg and induction of Ins occurred concurrently. Consistently, we did not detect Synaptophysin+ endocrine cells that were not producing islet hormones (Pdx1^{hi}Gcg−Ins− cells) [data not shown]. We therefore propose that the large numbers of Pdx1^{hi} α cells produced after endocrine specification [Pdx1^{OE} via Neurog3 promoter activity], but only after a considerable delay until the peri/postnatal period, underlie a remarkable transformation toward Ins-expressing cell types.

Further validation by quantitative RT–PCR [qRT–PCR] of pancreatic tissue [Neurog3^{Cre-Pdx1OE} islets could not be isolated] (see Supplemental Fig.
4), examining a panel of differentiation pathway transcriptional effectors and hormones, confirmed the postnatal alteration in α/β-cell proportions. Expression of Gcg and Pou3f4, encoding an α-cell factor involved in Gcg transactivation (Hussain et al. 1997), was significantly reduced and increased Pdx1 expression at E16.5, P1, P7, and P12. (Arrows) Geg Ins-coexpressing cells. [I] Quantitative analysis of cells with Gcg, Ins, or Gcg-Ins expression in control and Neurog3Cre-Pdx1OE. *P < 0.05.

It was important to address whether the loss of Gcg α cells in Neurog3Cre-Pdx1OE might be caused by the death of Pdx1α cells or overplication of other endocrine cells outcompeting or stifling Pdx1α cells. Any dying cells should have been relatively easily detected in the mantle location over the P1–P14 postnatal reprogramming period. No difference was observed in general apoptosis or cell proliferation (TUNEL- or BrdU/Ki67-labeling assay) between Neurog3Cre-Pdx1OE and control [Supplemental Fig. 5], supporting the hypothesis that Pdx1α cells become actively reprogrammed via a Gcg Ins transitional state into β cells. The comparable α + β population size between genotypes at all stages also supports our interpretation of a Pdx1-induced delayed reprogramming at the perinatal hormone-expressing stage, with no net loss of total endocrine cells.

Postnatal completion of α-to-β reprogramming induced by Pdx1

Ideally, pulse-chase lineage tracing of α-cell progenitors, with specific labeling concurrent with or just following the Neurog3 state, should unequivocally demonstrate the proposed α-to-β-cell conversion. Unfortunately, we could not perform Cre-based lineage tracing on top of our Cre-based Pdx1 activation method, and a suitable genetic tool for this test (i.e., an ArxCreERT strain) is not available. We therefore directly examined the production of Arx, a crucial α-cell transcription factor (Collombat et al. 2003), as an alternative approach to evaluate the α-cell reprogramming. In P1 Neurog3Cre-Pdx1OE, all Gcg cells, which expressed Pdx1 ectopically [Fig. II], were Arx+ as in controls [Fig. 3B]. The total number of Arx+ cells and the Arx mRNA level were comparable with controls at P1 [Fig. 3B; Supplemental Fig. 4]. The presence of both Arx+Geg+ and ArxIns+ cells is most consistent with the idea that normal numbers of α cells were initially produced and that the reprogramming was far from complete at birth. Arx was also present in the GcgIns+ cells over the postnatal period. In adult Neurog3Cre-Pdx1OE tissue, we reproducibly detected Arx in scarce, mantle-located Ins monohormonal cells. These ArxIns+ cells were detected in few islets, although sometimes several per islet, and were absent in controls [Fig. 3D]. The Ins signal in these cells was similar to the other Ins+ cells. Intriguingly, the decrease in total Arx cell number and mRNA level became apparent only at P7–P12, while the Gcg cell number and the mRNA level were already reduced by P1 [Fig. 2I; Supplemental Figs. 4, 6]. The conversion of hormone expression (Gcg to Ins) seems to precede down-regulation of the α-cell progenitor factor Arx,
with most Pdx1\(^{HI}\) α cells acquiring a more completely reprogrammed state by P7–P12. Despite their small number, the presence of adult Arx/Ins\(^{+}\) cells with apparently normal Ins immunodetectability per cell agrees with the idea that Pdx1 is dominant over Arx in determining the overt hormone-expressing state, even when in direct competition with the α-cell determinant.

Consistent with the massive postnatal reprogramming of Neurog3\(^{Cre}\).Pdx1\(^{OE}\) α cells, a decrease in MaB\(^{+}\) cells in P12 and adult pancreas (Fig. 3H; Supplemental Fig. 6) confirmed the lack of normally differentiated mature α cells and the absence of MaB in Ins\(^{+}\) cells (whether reprogrammed or not). Accordingly, a large decrease in MaB mRNA was found in P12 Neurog3\(^{Cre}\).Pdx1\(^{OE}\) (Supplemental Fig. 4). Besides its endocrine progenitor function, Pax6 was implicated in the control of the transcription of several α-cell-associated genes, such as Gcg and MaB (Gosmain et al. 2010). Interestingly, Pax4 could repress Pax6-mediated transactivation in vitro (Ritz-Laser et al. 2002). We speculate that the Pax6 reduction at P12 (Supplemental Fig. 4) results indirectly from the ectopic Pax4 in Gcg\(^{+}\) cells, described below.

Next, we assessed whether a complete β-cell differentiation program was deployed in the reprogrammed α cells. MaA, a marker associated with “final maturation” of β cells (Artner et al. 2010), at a level comparable with that in control Ins\(^{+}\) cells, was found in all Ins\(^{+}\) cells in Neurog3\(^{Cre}\).Pdx1\(^{OE}\) islet mantle of GcgCre-Pdx1OE (hereafter), driving exogenous Pdx1 expression in Gcg\(^{−}\) cells, with Gcg \(\rightarrow\) MafB littermate controls. Similar lineage-labeled YFP cell numbers were detected within the islet mantle of Gcg\(^{−}\).Pdx1\(^{OE}\) adult pancreas and controls (aged 3–3.5 mo). In Gcg\(^{−}\).Pdx1\(^{OE}\), but not control, exogenous Pdx1\(^{HI}\) was detected in a majority of lineage-labeled α cells (56% YFP/Pdx1\(^{HI}\) cells among all YFP\(^{+}\) cells, compared with 0% in control) (Fig. 4I), possibly reflecting nonparallel recombination of R26R\(^{EYFP}\) and CAG-CAT-Pdx1.

Consistent with the massive postnatal reprogramming of Neurog3\(^{Cre}\).Pdx1\(^{OE}\) α cells, a decrease in MaB\(^{+}\) cells in P12 and adult pancreas (Fig. 3H; Supplemental Fig. 6) confirmed the lack of normally differentiated mature α cells and the absence of MaB in Ins\(^{+}\) cells (whether reprogrammed or not). Accordingly, a large decrease in MaB mRNA was found in P12 Neurog3\(^{Cre}\).Pdx1\(^{OE}\) (Supplemental Fig. 4). Besides its endocrine progenitor function, Pax6 was implicated in the control of the transcription of several α-cell-associated genes, such as Gcg and MaB (Gosmain et al. 2010). Interestingly, Pax4 could repress Pax6-mediated transactivation in vitro (Ritz-Laser et al. 2002). We speculate that the Pax6 reduction at P12 (Supplemental Fig. 4) results indirectly from the ectopic Pax4 in Gcg\(^{+}\) cells, described below.

Next, we assessed whether a complete β-cell differentiation program was deployed in the reprogrammed α cells. MaA, a marker associated with “final maturation” of β cells (Artner et al. 2010), at a level comparable with that in control Ins\(^{+}\) cells, was found in all Ins\(^{+}\) cells in Neurog3\(^{Cre}\).Pdx1\(^{OE}\) islet mantle of GcgCre-Pdx1OE (hereafter), driving exogenous Pdx1 expression in Gcg\(^{−}\) cells, with Gcg \(\rightarrow\) MafB littermate controls. Similar lineage-labeled YFP cell numbers were detected within the islet mantle of Gcg\(^{−}\).Pdx1\(^{OE}\) adult pancreas and controls (aged 3–3.5 mo). In Gcg\(^{−}\).Pdx1\(^{OE}\), but not control, exogenous Pdx1\(^{HI}\) was detected in a majority of lineage-labeled α cells (56% YFP/Pdx1\(^{HI}\) cells among all YFP\(^{+}\) cells, compared with 0% in control) (Fig. 4I), possibly reflecting nonparallel recombination of R26R\(^{EYFP}\) and CAG-CAT-Pdx1.
between Neurog3+ endocrine progenitor cells and nascent Gcgα cells with respect to their plasticity toward Pdx1-enforced reprogramming. The features of lineage-labeled α cells in GcgCre-Pdx1OE by molecular marker analysis overlap those of Neurog3Cre-Pdx1OE α cells, except that the latter move forward and convert to a β-cell program. No difference in Sst and Ppy expression between Gcgα and control animals was detected (Supplemental Fig. 10).

We found an even greater resistance to reprogramming of adult α cells when we used a doxycycline-inducible genetic recombination system (Thorel et al. 2010) to delay the time of Pdx1 activation within Gcgα cells until 2–3.5 mo of age [see Supplemental Fig. 10 for details]. Most of the lineage-labeled adult α cells (95% of YFP+Pdx1a cells) had lost Gcg expression, and <1% showed evidence of Ins expression [i.e., YFP+/Pdx1a/Gcg−/Ins+] (Supplemental Fig. 10). These data clearly show that exogenous Pdx1 is insufficient to reprogram mature α cells, even over a longer time frame (4–6 wk) than the observed postnatal conversion (~2 wk) effected by expressing Pdx1 from the Neurog3 stage onward.

Overall, our findings demonstrate (1) a context-dependent differential competence of Pdx1 in directing endocrine fate allocation and differentiation and (2) a delayed peri/postnatal response to the early Neurog3-based imposition of a cell-autonomous reprogramming stimulus. With respect to affecting the embryonic α versus β-lineage-commitment process, exogenous Pdx1 expression within the Neurog3 cell population might not occur early enough in all progenitors. With this reasoning, the cells that move forward initially as “unaffected” α cells (i.e., ArcxGgcPdx1Ins) then experience an unknown peri/postnatal trigger to initiate a rapid yet progressive α-to-β conversion. Delaying the activation of exogenous Pdx1 until the Gcg state, either embryonic or adult, failed to induce any reprogramming, effectively producing an “unprogrammed” state with loss of Ggc/MafB but not suppression of Arc or gain of Ins. The differential response strongly suggests a requirement for Pdx1-mediated early competence priming in order to exert future cell conversion, and further, that reprogramming might be separable into modes of either unprogramming or a more profound switching of cell fate.

The unexpectedly delayed postnatal α-to-β conversion leads to speculation on the mechanism of this temporally cryptic priming, which could be referred to as a “chromotypic effect”—being encoded at the chromatin level, without necessarily causing an immediate explicit phenotypic alteration. Learning how Pdx1 pioneers chromatin priming or epigenetic landscaping could be important with respect to cell reprogramming in vitro and in vivo. It is pertinent to note that Pdx1 has been implicated in epigenetic modification via interaction with a pancreatic islet-enriched histone methyltransferase, Set7/9, a Pdx1-responsive factor proposed to enhance chromatin accessibility and transcription of β-cell genes (Deering et al. 2009; Ogihara et al. 2009). A switch of Set7/9 subcellular localization from cytoplasmic/nuclear (α cell) to exclusively nuclear (β cell) was observed in adult Pdx1α cells in our various genetic conditions (Supplemental Fig. 11). This finding suggests that exogenous Pdx1 begins to initiate an epigenetic reconfiguration from α to β, potentially influencing the recruitment of Set7/9 to certain β-cell-specific loci. We also note that, despite Pdx1-driven Set7/9 nuclear entry, the Ggc-mediated Pdx1OE α cells (embryonic and adult) remain refractory to reprogramming (Fig. 4, Supplemental Fig. 10). Identifying ways to switch certain forms of epigenetic coding associated with this resistance, perhaps determined via flow cytometry-based cell capture, could improve reprogramming efficiency.

The peri/postnatal conversion of Neurog3Cre-Pdx1OE α cells raises the possibility that part of the final process of normal islet cell development involves cells checking their “internal transcriptional status,” with considerable pathway shifting still possible if the epigenetic state is not completely fixed toward specific fates. The nature of any associated peri/postnatal developmental cue is unknown, and could be organ-local, systemic, or presumably
even metabolic. How these ideas relate to MafA/MafB resolution [the change from common production of both factors in immature β cells toward the mature pattern of MafAβ cells or MafBα cells], which also occurs perinatally (Artner et al. 2010), is a potentially fruitful area for future study. Determining the nature of regulatory checkpoints in the final maturation of endocrine cells could be germane to β-cell differentiation in vitro. The genetic models here could also provide a novel platform for identifying and manipulating cellular maturation and understanding how plasticity could be induced or restricted. Such principles might be applicable to multiple cell types in the pancreas and, more generally, to other organ systems.

Materials and methods

Mice

Information on mouse strains is in the Supplemental Material. All animals and embryos used were PCR-genotyped. Animal handling was under protocols approved by Vanderbilt University Medical Center Institutional Animal Care and Use Committee, or according to the Direction Générale de la Santé of the Canton de Genève.

Immunohistochemistry and morphometric analysis

Tissues were prepared as described (Fujitani et al. 2006). Information on antibodies and morphometric methods are in the Supplemental Material. Statistical analysis was performed using single-factor ANOVA tests and significance determined by $P < 0.05$.

qRT–PCR

RNA isolation (Trizol, Invitrogen), DNase treatment (Ambion), cDNA synthesis, and qPCR (SYBR green, Bio-Rad) were performed. Three samples per genotype per stage were collected, and qPCR was performed at least twice on each sample to determine ΔCt. Results were shown as ΔCt ± SEM and subjected to Student’s t-test to determine significance ($P < 0.05$).

Acknowledgments

We thank A. Leiter for Neurog3CAG-CAT-Pdx1 mice, and P. Collombat, G. Gu, and B. Sosa-Pineda for Arx, Neurog3, and Pax4 antibodies. We also thank R. Stein, G. Gu, M. Gannon, and members of Wright laboratory for discussions. The work was supported by JDRF to Y.P.Y. and NIH U19 DK 042502 and U01 DK 089570 to C.V.E.W.

References

Context-specific α-to-β-cell reprogramming by forced Pdx1 expression

Yu-Ping Yang, Fabrizio Thorel, Daniel F. Boyer, et al.

Genes Dev. 2011 25: 1680-1685
Access the most recent version at doi:10.1101/gad.16875711

Supplemental Material
http://genesdev.cshlp.org/content/suppl/2011/08/18/25.16.1680.DC1

References
This article cites 19 articles, 10 of which can be accessed free at:
http://genesdev.cshlp.org/content/25/16/1680.full.html#ref-list-1

Email Alerting Service
Receive free email alerts when new articles cite this article - sign up in the box at the top right corner of the article or click here.

To subscribe to *Genes & Development* go to:
http://genesdev.cshlp.org/subscriptions

Copyright © 2011 by Cold Spring Harbor Laboratory Press