Find RNAi solutions for all your applications.

Thermo Scientific RNAi solutions encompass the world’s largest and most complete portfolio of innovative and technologically advanced RNAi tools. When selecting an RNAi platform, consider our best-in-class siRNA, shRNA, microRNA reagents and complete suite of tools for delivery, viral packaging, controls and confirmation of results.

- **siRNA** - Patented dual-strand modifications in ON-TARGETplus siRNA provides unrivaled specificity. Deliver Accell siRNA in difficult-to-transfect cells WITHOUT a transfection reagent.
- **shRNA** - Genome-scale collections of microRNA-adapted shRNA for constitutive and inducible RNAi.
- **microRNA** - Rationally designed synthetic and expressed microRNA mimic and hairpin inhibitors.

From single gene targets to genome-scale RNAi screens, find your RNAi solutions at www.thermoscientific.com/silence

RNAi Global Initiative
Join our community of researchers using RNAi screening to accelerate biological research and medical discovery.

Moving science forward

Thermo SCIENTIFIC
Part of Thermo Fisher Scientific
DirectPCR DNA Extraction Reagents

Genotyping without DNA isolation

Cited in the 2011 February issue of Genes & Development

Simple!
1. Lyse tails in DirectPCR® Reagent
2. Incubate for 45 min at 85°C
3. PCR genotyping with 1 μl lysate

NO!
Centrifugation
Tube change
Pipetting
Hands-on-time
► Single-Tube DNA Extraction

FREE Samples
email to viagen@viagenbiotech.com

Unconditional refund
if unsatisfied
email to viagen@viagenbiotech.com

Order
http://viagenbiotech.com/reagents.html

► Time saving
► Cost saving: 26 cents per tail
► Safe
► Environmental
► Reliable and efficient

Viagen DirectPCR® DNA Extraction System is a single-tube system for rapid preparation of DNA from mouse tails, ear pieces, yolk sac, and culture cells. The components developed by scientists at Viagen Biotech Inc. allow the resulting DNA extracts to be compatible with genomic PCR for genotyping. Crude extracts of biological samples are not compatible with many molecular biology-grade reactions such as polymerase chain reaction (PCR) in part due to inhibitors contained in crude extracts. The DirectPCR reagents not only mediate the rapid lysis of biological samples but also contain inhibitors that effectively suppress the inhibitory activities of crude lysates for PCR amplification while maximally maintaining the integrity of released genomic DNA. The simple procedure completely eliminate any solution transfer or tube-opening steps, providing you with substantial extra time. DirectPCR reagents cost only 26 cents per tail, which allows you save an enormous amount of money over the year.

<table>
<thead>
<tr>
<th>Product</th>
<th>Description</th>
<th>Cat. No.</th>
<th>Price (US$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DirectPCR Lysis</td>
<td>250 Mouse tails (50 ml)</td>
<td>101-T</td>
<td>79</td>
</tr>
<tr>
<td>Reagent</td>
<td>500 Mouse tails (100 ml)</td>
<td>102-T</td>
<td>139</td>
</tr>
<tr>
<td></td>
<td>500 Mouse ears (50 ml)</td>
<td>402-E</td>
<td>139</td>
</tr>
<tr>
<td>Proteinase K Solution</td>
<td>5 ml (20 mg/ml)</td>
<td>501-PK</td>
<td>99</td>
</tr>
</tbody>
</table>
TrueORF Gold cDNA Clones

Protein Expression Guaranteed!

Why settle for clones with little validation?

Choose TrueORF Gold.

- Expression validated by Western
- Sequence verified
- Transfection ready
- Easily shuttled into 60 vectors
- Next-day shipment

HEK293 were transfected with (1) empty vector (2) TrueORF for Myc/ODK tagged hTERT (Cat# FC27436). The lysates were analyzed using anti-ODK antibody to show over-expression of hTERT. *ODK is the same as FLAG.

origene.com/TrueORF_Gold
Why spend 6 months on protein production?
Order proteins bulk at Sino Biological,
Get it in 1 week, Save Time, Budget & Trouble.

Building World Largest Protein Bulk Supplier

Over 1000 institutions and companies rely on Sino Biological for proteins.
Why shouldn't you?
Order vials online at www.sinobiological.com
Request for bulk discount: Order@sinobiological.com

> 1700 proteins, all in BULK quantities, full coverage of hot research areas.
> 1000 antibodies, generated from FULL-LENGTH protein.
2500 cDNA clones, 90% as low as $95.
100 ELISA kits, and more.
The World’s First Intelligent EMCCD Bio-Imaging Camera

- Set the standard in your research
- Measure and quantify data in photoelectrons
- Consistently create reproducible data
- Significantly streamline workflow

Take your research to another level

www.EvolveYourScience.com
RNA molecules participate in and regulate a vast array of cellular processes, and the scientific community is now entering a new era in which some aspect of RNA biology— as a tool, a therapeutic, a diagnostic, or part of a fundamental process—is becoming increasingly important. But initiating RNA research can be intimidating, and without a thorough understanding of the challenges and complexities inherent in handling this fragile nucleic acid, forays into the RNA world can be quite frightening. RNA: A Laboratory Manual provides a broad range of up-to-date techniques so that any investigator can confidently handle RNA and carry out meaningful experiments, from the most basic to the most sophisticated. Originating in four of the field’s most prominent laboratories and written with novices as well as more advanced researchers in mind, this manual provides the necessary background and strategies for approaching any RNA investigation in addition to detailed step-by-step protocols and extensive tips and troubleshooting information. RNA: A Laboratory Manual will enable any researcher to approach a wide variety of RNA-related problems with confidence and a high expectation of success.

Published in November 2010, 586 pp., illus., appendices, index
Hardcover $240
Paperback $165

CONTENTS
Preface
Acknowledgments
CHAPTER 1: THE FUNDAMENTALS
Introduction
Common Sense in Dealing with RNA
Paraffin and Fixative Methods and Their Use in RNA Purification
Recovering Purified RNA: Guidelines for Precipitation
Resuspending Purified RNA
Assessing the Quantity and Quality of Isolated RNA
After Purification
Resuspending Bacterial RNAs
Enrichment of mRNA Using Oligo(dT) Cellulose
Enriching for Species of RNA Other Than mRNA
Miscellaneous (but Important) General Items

CHAPTER 2: PURIFICATION OF RNA FROM NATURAL SOURCES
Overview
Protocols
1. SDS Solubilization and Phenol Extraction
2. Purification of RNA Using E Buffer (TRI Reagent)
3. Ethanol Precipitation of RNA and Use of Garen
4. Guidelines for the Use of RNA Purification Kits
5. Preparation of Cytoplasmic and Nuclear RNA from Tissue Culture Cells
6. Removal of Ribosomal Subunits (gRNA) from Cytoplasmic Extracts
7. Substitution with SDS and Deproteinization
8. Isolation of Total RNA from Yeast Cell Cultures
Method I: Vegetative Cells
Method II: Mitotic Cells
9. Bacterial RNA Initiation (E. coli)
10. Removing RNA from Deproteinized, Phenol-ethanol-treated Total RNA
Method I: Enzymatic Digestion of RNA
Method II: Selective Precipitation of Large RNAs with 2 M LiCl or PREMI
Method III: Removal of mRNA by Hybrid Selection
11. Enrichment of Poly(A)+ mRNA Using Immobilized Oligo(dT)
12. Removal of RNA from Eukaryotic Cells
13. Gel Electrophoresis of Poly(A)+ RNA
Method I: Polyacrylamide Gel Electrophoresis
Method II: Agarose Gel Electrophoresis (Nondenaturing)
14. Determining the Yield and Quality of Purified RNA

CHAPTER 3: DETECTION AND CHARACTERIZATION OF SPECIFIC RNAs
Overview
Probe Preparation
Northern Blotting
Northern Probes
Primer Extension
Other Methods

CHAPTER 4: SYNTHESIS, PURIFICATION, LABELING, AND SUBSTITUTION OF TRANSCRIPTS SYNTHETIZED IN VITRO
Overview
In Vitro Transcription: The Basic Yield of In Vitro–Synthesized RNA
Labeling of In Vitro–Synthesized RNA
Protocols
1. In Vitro Transcription of RNA Synthesis, Labeling, and Substitution
2. High-yield Synthesis of RNA Using T7 RNA Polymerase and Plasma DNA or Oligonucleotide Template
3. Determining the Yield of RNA Synthesized in Vitro
4. Gel Purification of RNA
5. 3’ End Labeling of RNA with 32P Phosphatase and T4 RNA Ligase
6. 3’ End Labeling of RNA with T4 Polynucleotide Kinase and 32P Phosphatase
7. 5’ End Labeling of RNA with T4 Polynucleotide Kinase
8. 5’-3’ Site-specific Isotopic Labeling and Substitution of RNA

CHAPTER 5: DETECTING AND DEFINING RNA—PROTEIN AND RNA–RNA INTERACTIONS
Introduction
General Methods for Detecting RNA-Protein Interactions
RNA Structure Probing
Mapping Sites of RNA-Protein Interactions
Protocols
1. Filter-binding Assay for Analysis of RNA–Protein Interactions
2. Native Polyacrylamide gel electrophoresis–nondenaturing PAGE
3. Gel Mobility Shift Assay
4. Electrophoretic Mobility Shift Assay
5. SELEX: Identifying Nucleotide-binding Sites in RNA
6. RNA Structure Determination Using Chemical and Nucleic Acid Digestions
Method I: RNA Structure Determination Using Chemical Methods
Method II: RNA Structure Determination Using Nucleic Acid Digestion
7. Mapping Sites of RNA–Protein Interactions Using Chemical Methods
8. Mapping Sites of RNA–Protein Interactions Using Nucleic Acid Digestion
9. Interactions of DNA with RNA
10. RNA Helicase
11. RNA–DNA Hybridization
12. Recognition of RNA with Oligonucleotide Probes
13. RNA Endonuclease
14. RNA–RNA interactions
15. Basic Affinity Selection Methods
Method I: Basic Selection with Beads
Method II: Selection with a Biotinylated Oligonucleotide
Method III: Selection of a Ribonucleoprotein Using a Complementary Biotinylated Oligonucleotide

CHAPTER 6: ANALYSIS OF RNA-PROCESSING REACTIONS USING GEL-FREE SYSTEMS
Introduction
Guidelines for the Preparation of Active Cell-Free Systems
Guidelines for Testing and Optimizing Extracts Developing Cell-Free Systems from Poorly Organized Organisms
Protocols
1. Preparation of Nuclear Extracts from HeLa Cells
2. Analysis of poly(A)+ RNA Using HeLa Cell Nuclear Extracts
3. Preparation of Drosophila Kc Nuclear Extracts
4. In Vitro Splicing
5. In Vitro Splicing Reactions in Drosophila Kc Nuclear Extracts
6. Preparation and Analysis of Cell-free Splicing Extracts from Saccharomyces cerevisiae
7. Analysis of Splicing in Vitro Using Extracts of Saccharomyces cerevisiae
8. Spectroscopy Using Oligonucleotides from Saccharomyces cerevisiae

APPENDICES
Appendix I: Quick Reference for Enzymes Commonly Used in RNA Research
Appendix II: Procedures
Appendix III: Sequencing of RNAs by High-throughput Methods

INDEX

ISBN 978-0-87969-90-4
ISBN 978-0-87969-91-1

www.cshlp.com
Sharing Ideas at the Frontiers of Science

There has never been a better time to experience a Gordon Research Conference! Our high quality, cost-effective meetings are widely recognized as the world’s premier scientific conferences.

Cell Growth & Proliferation
June 26 - July 1, 2011
Biddeford, ME

Cellular Systems Biology
NEW?
July 24-29, 2011
Davidson, NC

Cell Growth & Proliferation (GRS)
A two-day seminar for graduate students & post docs
June 25-26, 2011
Biddeford, ME

Cerebellum
NEW?
August 21-26, 2011
New London, NH

Lung Development, Injury & Repair
NEW?
August 14-19, 2011
Newport, RI

Mammalian Gametogenesis & Embryogenesis
August 21-26, 2011
Waterville Valley, NH

Apoptotic Cell Recognition & Clearance
Death and Damage in Development and Disease
July 17-22, 2011
Lewiston, ME

Developmental Biology
June 19-24, 2011
Andover, NH

Apoptotic Cell Recognition & Clearance (GRS)
Removal, Resolution and Regeneration
July 16-17, 2011
Lewiston, ME

Cell-Cell Fusion (GRS)
A two-day seminar for graduate students & post docs
Membrane Fusion
August 6-7, 2011
Biddeford, ME

Multi-Drug Efflux Systems
From Molecular Mechanisms to Pharmacological Modulation
June 12-17, 2011
Les Diablerets, Switzerland

Cell-Cell Fusion
In Sex, Life, Development and Disease
August 7-12, 2011
Biddeford, ME

Genetic Toxicology
July 10-15, 2011
Lucca (Barga), Italy

Nucleosides, Nucleotides & Oligonucleotides
July 3-8, 2011
Newport, RI
Join us for our first conference in Boston:
Changing Landscape of the Cancer Genome

Scientific Organizers: Lynda Chin, Christoph Lengauer and Michael Stratton

June 20–25, 2011 • Boston Park Plaza Hotel & Towers • Boston, Massachusetts • USA

Keynote Speaker: Tom Hudson, Ontario Institute for Cancer Research, Canada

Other Speakers:
- Andrea Califano, Columbia University, USA
- Peter Campbell, Wellcome Trust Sanger Institute, UK
- Lynda Chin, Dana-Farber Cancer Institute, TCGA, USA
- Arul M. Chinnaiyan, University of Michigan, USA
- James I. Collins, Boston University, USA
- James R. Downing, St Jude Children’s Research Hospital, USA
- Giulio F. Draetta, Dana-Farber Cancer Institute, USA
- Andy Futreal, Wellcome Trust Sanger Institute, UK
- Stacey Gabriel, Broad Institute, USA
- Levi A. Garraway, Dana-Farber Cancer Institute, USA
- Orly G. Getz, Broad Institute, USA
- Todd R. Golub, Broad Institute, USA
- Iya G. Khalil, GNS Healthcare, USA
- Peter W. Laird, University of Southern California, Keck School of Medicine, USA
- Christoph Lengauer, Sanofi-Aventis, France
- Marco A. Marra, BC Cancer Agency, Canada
- John D. McPherson, Ontario Institute for Cancer Research, Canada
- Matthew L. Meyerson, Dana-Farber Cancer Institute, TCGA, USA
- Franziska Michor, Dana-Farber Cancer Institute, USA
- Xose S. Puente, University of Oviedo, Spain
- Murray O. Robinson, AVEO Pharmaceuticals, USA
- Michael Stratton, Wellcome Trust Sanger Institute, UK
- Josh Stuart, University of California, Santa Cruz, USA
- Victor E. Velculescu, Johns Hopkins University, USA
- Marc Vidal, Dana-Farber Cancer Institute, USA
- Richard Wilson, Washington University School of Medicine, USA
- Meredith Yeager, SIAC—National Cancer Institute, NIH, USA
- Jessica Zucman-Rossi, INSERM U674, France

Session Topics:
- Integrative Cancer Genome Projects
- Genome Technologies: Current State and 3rd Generation
- Cancer Genome Analysis: Bioinformatics
- Cancer Genome Analysis: Algorithm Development and Network Modeling
- Genome Biology
- Beyond the Genome
- Cancer Genomics and Drug Discovery
- Workshop 1: Genome Technologies
- Workshop 2: Genome Analysis Tools
- Workshop 3: Late-Breaking Developments
- NCI Health Disparities Workshop

www.keystonesymposia.org/11F3 • 1.800.253.0685 • 1.970.262.1230