Isoform-specific p73 knockout mice reveal a novel role for ΔNp73 in the DNA damage response pathway

Margareta T. Wilhelm,1,2 Alessandro Rufini,1,3 Monica K. Wetzel,4,5 Katsuya Tsuchihara,1,6 Satoshi Inoue,1 Richard Tomasini,1,7 Annick Itie-Youten,1 Andrew Wakeham,1 Marie Arsenian-Henriksson,2 Gerry Melino,3,8 David R. Kaplan,4,9 Freda D. Miller,5,9,10 and Tak W. Mak1,11

1The Campbell Family Institute for Breast Cancer Research, Princess Margaret Hospital, Toronto, Ontario M5G 2C1, Canada; 2Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77 Stockholm, Sweden; 3Toxicology Unit, Medical Research Council Leicester, Leicester LE1 9HN, United Kingdom; 4Department of Cell Biology, Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada; 5Department of Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada; 6Research Center for Innovative Oncology, National Cancer Center Hospital East, Kashiwa, Chiba 277-8577, Japan; 7Institut National de la Sante et de la Recherche Medicale, Unite 624, Stress Cellulaire, Parc Scientifique et Technologique de Luminy, 13288 Marseille Cedex 9, France; 8Biochemistry IDI-IRCCS Laboratory, c/o University of Rome “Tor Vergata,” 00133 Rome, Italy; 9Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5G 1X5, Canada; 10Department of Physiology, University of Toronto, Toronto, Ontario M5G 1X5, Canada

Mice with a complete deficiency of p73 have severe neurological and immunological defects due to the absence of all TAp73 and ΔNp73 isoforms. As part of our ongoing program to distinguish the biological functions of these isoforms, we generated mice that are selectively deficient for the ΔNp73 isoform. Mice lacking ΔNp73 (ΔNp73–/– mice) are viable and fertile but display signs of neurodegeneration. Cells from ΔNp73–/– mice are sensitized to DNA-damaging agents and show an increase in p53-dependent apoptosis. When analyzing the DNA damage response (DDR) in ΔNp73–/– cells, we discovered a completely new role for ΔNp73 in inhibiting the molecular signal emanating from a DNA break to the DDR pathway. We found that ΔNp73 localizes directly to the site of DNA damage, can interact with the DNA damage sensor protein 53BP1, and inhibits ATM activation and subsequent p53 phosphorylation. This novel finding may explain why human tumors with high levels of ΔNp73 expression show enhanced resistance to chemotherapy.

[Keywords: p73; p53; neurodegeneration; DNA damage response; apoptosis]

Supplemental material is available at http://www.genesdev.org.

Received October 12, 2009; revised version accepted January 27, 2010.

The DNA damage response (DDR) acts as an important barrier against tumorigenesis. This molecular pathway consists of a complex network of DNA damage sensors, signal transducers, and effectors. Among its central components are ATM, ATR, and DNA-PK, which are PI3K-related kinases whose substrates mediate cell cycle arrest, DNA repair, and apoptosis. ATM is recruited to DNA double-strand breaks (DSBs) by the Mre11–Rad50–Nbs1 (MRN) complex and thereby activated. Activated ATM amplifies the response by phosphorylating several target substrates, including the tumor suppressor p53. Upon phosphorylation by ATM, p53 is stabilized and activated, and induces cell cycle arrest and/or apoptosis (Banin et al. 1998; Canman et al. 1998). The gene encoding p53 (TP53 in humans, Trp53 in mice) is the most commonly mutated gene in adult human tumors (http://www.p53.iarc.fr; http://www.p53.free.fr). The importance of p53’s tumor-suppressive role is reflected in Trp53-deficient mice (p53–/– mice), which rapidly develop tumors at high frequency (Donehower et al. 1992).

p53 is the prototypical member of a protein family that includes p63 and p73. These proteins share structural and functional homology, and act as transcription factors to regulate cellular proliferation, differentiation, and death (Melino et al. 2002). Although p53 family members transactivate an overlapping set of target genes, the generation of individual knockout (KO) mice has shown clearly that each family member regulates unique genetic programs. In contrast to p53 deficiency, disruption of the p63 gene (Trp63) results in severe developmental anomalies, whereas complete deletion of the p73 gene (Trp73) leads to neurological and immunological defects (Yang et al. 1999, 2000).
The Trp53, Trp63, and Trp73 genes each encode several different N-terminally truncated isoforms (ΔN) due to usage of an internal promoter. Additional isoforms result from alternative splicing of C-terminal exons [α-η] (Melino et al. 2002). Whereas full-length p53 family proteins such as p53, TAp73, and TAp63 function as transcription factors inducing cell cycle arrest, differentiation, or apoptosis, the ΔN isoforms block the transactivation activity of these molecules in a dominant-negative fashion (Grob et al. 2001). Thus, the ΔN isoforms act like oncogenes. The potential oncogenic effect of ΔNp73 is supported by several observations: (1) Overexpression of ΔNp73 facilitates cell immortalization and cooperates with oncogenic RasV12 in cellular transformation [Stiewe et al. 2002], (2) cells overexpressing ΔNp73 promote tumor formation when injected into nude mice [Stiewe et al. 2002; Petrenko et al. 2003], and (3) RasV12 is involved in biasing the TAp73/ΔNp73 ratio in favor of ΔNp73, and the resulting down-regulation of TAp73 and up-regulation of ΔNp73 are important for Ras transforming activity [Beitzinger et al. 2008].

The severe developmental defects exhibited by mice with a null mutation of Trp73 (Trp73−/− or p73−/− mice) include hydrocephalus, hippocampal dysgenesis, and abnormalities of the pheromone sensory pathway. Furthermore, these mice succumb at an early age to chronic infections and inflammation [Yang et al. 2000]. However, because these mutants lack both the TAp73 and ΔNp73 isoforms, it is difficult to assess the contribution of each isoform to the observed phenotypes. To shed light on this problem, we generated mice that are selectively deficient in Np73 isoforms. We reported previously that mice lacking only the TAp73 isoforms (TAp73−/− mice) are infertile, show a high incidence of spontaneous tumors, and are very sensitive to chemical carcinogens [Tomasini et al. 2008, 2009]. This work demonstrated that TAp73 is important for maintaining genomic stability, and established TAp73 as a bona fide carcinogen [Tomasini et al. 2008]. However, neuronal density in the mutant was significantly reduced (61.38% of controls) (Fig. 2A,B) and neuronal density was decreased significantly (61.38% of controls) (Fig. 2A,B) and neuronal density was decreased significantly (61.38% of controls) (Fig. 2A,B) and neuronal density was decreased significantly (61.38% of controls) (Fig. 2A,B) and neuronal density was decreased significantly (61.38% of controls) (Fig. 2A,B).

Results

Mice deficient for ΔNp73 are viable and fertile and have a normal life span, but display signs of neurodegeneration

We generated our ΔNp73−/− mice by specifically targeting exon 3′ of the Trp73 gene [Supplemental Fig. 1A]. This exon is expressed exclusively in ΔNp73 isoforms and not in TAp73 isoforms. The loss of ΔNp73 expression was confirmed at both the mRNA and protein levels [Supplemental Fig. 1B,C]. No major differences were observed in TAp73 mRNA levels in the liver, testis, or lung of wild-type and ΔNp73−/− littermate mice [Supplemental Fig. 1D], demonstrating that our targeting strategy did not affect TAp73 isoforms. Mice deficient for ΔNp73 were born at the normal Mendelian ratio (wild type, 28%; heterozygote, 51%; KO, 20%), although we did note a slight, but significant [P = 0.0179], reduction in ΔNp73−/− females (wild type, 32%; heterozygote, 50%; KO, 18%) [Supplemental Fig. 1E]. Both male and female ΔNp73−/− mice were fertile and enjoyed a normal life span (data not shown).

As stated above, p73−/− mice display severe neurological defects, including hippocampal dysgenesis, postnatal loss of neurons that results in greatly enlarged ventricles (hydrocephalus), and reduced cortical thickness [Yang et al. 2000]. We showed previously that TAp73−/− mice display hippocampal dysgenesis similar to that in p73−/− mice, implying that TAp73 is essential for normal hippocampal development [Tomasini et al. 2008]. However, ventricular size and cortical thickness were normal in TAp73−/− brains, suggesting that it is the loss of ΔNp73 in p73−/− mice that causes the abnormalities in these parameters. To test if ΔNp73−/− mice displayed CNS atrophy similar to that in p73−/− mice [Pozniak et al. 2002; Wetzl et al. 2008], we used Nissl staining to analyze the underlying cytoarchitecture of the motor cortex in wild-type and ΔNp73−/− mice at 10 mo and 26–27 mo of age. Measurement of coronal sections at equivalent rostrocaudal levels revealed that the width of the motor cortex from the corpus callosum to the pia [see the boxed region in Fig. 1A] did not differ between wild-type and ΔNp73−/− mice at 10 mo of age [Fig. 1B]. However, neuronal density in the mutant was significantly reduced [61.61% of age-matched controls] [Fig. 1C,D]. This decrease paralleled a concomitant increase in the number of condensed cells [127% of age-matched controls] [Fig. 1E]. In contrast, by 26–27 mo of age, motor cortex thickness was reduced significantly in ΔNp73−/− mice [84.75% of controls] [Fig. 2A,B] and neuronal density was decreased significantly [61.38% of controls] [Fig. 2C,D]. However, numbers of condensed cells in the motor cortex were not significantly different in wild-type and ΔNp73−/− mice at 26–27 mo [Fig. 2E]. Taken together, these results indicate that ΔNp73−/− mice display neuroanatomical evidence of mild neurodegeneration.

ΔNp73−/− cells show enhanced expression of p53 target genes and increased apoptosis in response to DNA damage

It has been hypothesized that ΔNp73 might interfere with p53-mediated responses by competing with p53 for DNA-binding sites in target gene promoters [Zaika et al. 2002]. Such binding would inhibit the expression of p53-induced genes such as p21, Mdm2, and Puma. To test this idea, we examined the expression of p53 target genes before and after DNA damage in primary mouse embryonic fibroblasts (MEFs) isolated from ΔNp73−/− embryos. Surprisingly, even in untreated ΔNp73−/− MEFs, we detected a modest increase in expression of p53 target genes.
compared with the wild type at both the mRNA and protein levels [Fig. 3A,B]. These data indicate that, even in unstressed cells, ΔNp73 is required to dampen levels of p53 targets in order to avoid detrimental effects. Compared with unstressed wild-type MEFs, no increase in apoptosis was detected in unstressed ΔNp73−/− MEF cultures [data not shown]. However, both MEFs and thymocytes from ΔNp73−/− mice showed heightened sensitivity to a wide range of DNA-damaging agents, including cisplatin, doxorubicin, etoposide, and γ-irradiation [Fig. 3C,D]. These results suggest that lack of ΔNp73 sensitizes cells to the effects of DNA damage. Accordingly, in response to DNA damage, we observed a greater increase in mRNA expression of the proapoptotic p53 target PUMA in ΔNp73−/− MEFs than in controls [Fig. 3A]. Importantly, the enhanced apoptotic response in thymocytes was reversed on a p53-null background [Fig. 3D], confirming that ΔNp73 is a negative regulator of p53-dependent apoptosis. Interestingly, we could not detect any difference between wild-type and ΔNp73−/− cells in response to UV treatment, TNFα treatment, or IL-2 withdrawal [data not shown], suggesting that ΔNp73 dampens the effects of certain types of apoptotic stress but not all.

Loss of ΔNp73 impairs tumor formation in vivo

To test whether ΔNp73 deficiency plays a role in tumor formation in vivo, we transformed primary MEFs from wild-type and ΔNp73−/− littermates with E1A and RasV12 [Supplemental Fig. 2A]. No differences were observed in proliferation rate in vitro or capacity to form colonies in soft agar [Supplemental Fig. 2B,C]. However, when injected subcutaneously into athymic nude mice, transformed ΔNp73−/− MEFs formed tumors that were significantly smaller and at a slower rate than those arising in animals injected with wild-type MEFs [Fig. 4A,B], suggesting that loss of ΔNp73 impairs the ability of transformed cells to initiate new tumors. Surprisingly, this decrease in the size of tumors derived from ΔNp73−/− cells was not associated with an increase in apoptosis [data not shown]. However, in agreement with recent reports on p53-mediated tumor suppressor activity in

Figure 1. Loss of ΔNp73 reduces neuronal density in the brain. Brains from 10-mo-old wild-type (n = 5) and ΔNp73−/− (n = 4) mice were analyzed histologically. (A) Representative Nissl-stained coronal section of a 10-mo-old ΔNp73−/− mouse. Boxed region is the strip of cortical tissue spanning the corpus callosum to the pia that was assessed for cortical thickness. (B) Quantitation of cortical thickness. No differences in cortical thickness were detected between wild-type and ΔNp73−/− mice at 10 mo of age. (C,D) Reduced neuronal density. Cell density in the cortical strips of the mice in A and B was assessed histologically by Nissl staining (C) and was quantified (D) (ΔNp73−/−, 1286 ± 160.6 neurons per square millimeter, vs. wild type, 1960 ± 79.98 neurons per square millimeter). Results in D are the mean ± SEM. (E) Increased frequency of condensed cells. Condensed cells in the cortical strips of the mice in A and B were counted (ΔNp73−/−, 15.14 condensed cells per square millimeter, vs. wild type, 38.45 condensed cells per square millimeter). Results shown are the mean ± SEM.

Figure 2. Aged ΔNp73−/− mice display signs of neurodegeneration. Brains from 26- to 27-mo-old wild-type (n = 2) and ΔNp73−/− (n = 2) mice were analyzed histologically. (A) Representative Nissl-stained coronal sections of 26- to 27-mo-old wild-type and ΔNp73−/− mice. A decrease in cortical thickness can be seen in the mutant compared with the wild type. (B) Quantitation of cortical thickness. A significant decrease in cortical thickness was detected in ΔNp73−/− mice at 26–27 mo of age compared with the wild type (ΔNp73−/−, 917 ± 6.579 mm², vs. wild type, 1082 ± 14.12 mm²). Results in B are the mean ± SEM. (C,D) Reduced neuronal density. Cell density in the cortical strips of the mice in A and B was assessed histologically by Nissl staining (C) and was quantified (D) (ΔNp73−/−, 1243 ± 38.28 neurons per square millimeter, vs. wild type, 200 neurons per square millimeter). Results shown in D are the mean ± SEM. (E) Comparable frequency of condensed cells. Condensed cells in the cortical strips of the mice in A and B were counted, but no significant differences were observed.
vivo [Ventura et al. 2007; Xue et al. 2007], we did detect an increase in DNp73-deficient tumors of the senescence markers senescence-associated β-galactosidase (SA-β-gal), p16 INK4A, and DcR2 (Fig. 4C,D). The p53 target gene DcR2 has been identified as a marker for oncogene-induced senescence and is found expressed in premalignant tumors, but expression is lost upon transition to malignant tumors (Collado et al. 2005; Liu et al. 2005). Our results therefore suggest that DNp73 is needed for transformed cells to establish tumors in vivo, possibly by inhibiting senescence.

DNp73 inhibits the phosphorylation and activation of ATM and p53 induced by DNA damage

The dominant-negative effect of DNp73 on the transactivation abilities of p53 and TAp73 is thought to stem from competition for binding to the same DNA sequences in target gene promoters (Grob et al. 2001). However, we detected higher levels of p53 protein in DNp73−/− MEFS treated with either cisplatin or doxorubicin than in wild-type MEFS treated with these agents [Fig. 5A,B; Supplemental Fig. 3A]. These results suggest that the observed increase in DNA damage-induced apoptosis in DNp73−/− cells may be due not only to a lack of competition for binding to target gene promoters, but also to increased p53 activity. The ATM protein is rapidly activated in response to DNA damage, and is one of the kinases responsible for phosphorylation of Ser15 of human p53 [Ser18 of murine p53] (Banin et al. 1998; Canman et al. 1998). Phosphorylation of p53Ser15 leads to a concomitant phosphorylation of its N-terminal Thr18, Ser9, and Ser20 residues that in turn abrogates p53:Mdm2 interaction and inhibits 26S proteosome-mediated degradation of p53 [Saito et al. 2003]. DNA damage also triggers the autophosphorylation of ATM at Ser1981 (Ser1987 in...
murine ATM. Although work in mouse models has shown that this residue is dispensable for ATM function, its phosphorylation correlates with DSB-induced activation of ATM, and thus is still useful as a marker of ATM kinase activity [Pellegrini et al. 2006, Daniel et al. 2008]. We examined our wild-type and ΔNp73−/− MEFS after exposure to DNA damage and detected higher amounts of phosphorylated p53Ser18 in the mutant cells [Fig. 5B,C], indicating that deletion of ΔNp73 leads to increased activation of p53.

We next investigated the activation of ATM by doxorubicin or γ-irradiation in ΔNp73−/− cells and tissues. We detected increased phosphorylation of ATMSer1987 in ΔNp73−/− MEFS, thymocytes, and skin tissue subjected to DNA damage [Fig. 5C–E], as well as increased phosphorylation (activation) of the ATM substrate histone H2AX [Fig. 5E]. To further elucidate the role of ATM in the increased apoptotic sensitivity of ΔNp73−/− cells, we compared ΔNp73−/− thymocytes from the doubly deficient offspring to γ-irradiation. Irradiated ΔNp73−/− ATM−/− thymocytes show similar resistance to apoptosis as ATM−/− thymocytes [Fig. 5F], suggesting that, along with p53, ATM is required for the enhanced apoptosis observed in ΔNp73−/− cells.

We next tested if the above results could be recapitulated in human tumor cells by using siRNA to knock down ΔNp73 expression in U2OS cells [osteosarcoma cells expressing wild-type p53] [Supplemental Fig. 4A]. Notably, ΔNp73 knockdown strongly sensitized U2OS cells to DNA damage-induced cell death [Fig. 6A]. Moreover, phosphorylation of ATMSer1981 and ATM/ATR substrates [Fig. 6B], as well as expression of p53, PUMA, and p21 [Supplemental Fig. 4B,C], were increased when ΔNp73 was depleted. To investigate the significance of p53 in these events, we employed isogenic strains of the human colon cancer cell line HCT116 that are wild type or deficient for p53 [HCT116ΔNp73+/− or HCT116ΔNp73−/−]. Significantly, the ability of ΔNp73 knockdown to sensitize HCT116ΔNp73+/− cells to DNA damage was impaired by p53 deletion [Supplemental Fig. 4D]. To confirm the inhibitory effects of ΔNp73 on p53-mediated responses to DNA damage, we ectopically overexpressed the ΔNp73β isoform in U2OS cells. Upon γ-irradiation, we observed decreased ATM phosphorylation, reduced p53 protein accumulation, and decreased PUMA protein expression in the presence of excessive ΔNp73β [Fig. 6C,D]. Thus, our data suggest that ΔNp73 interferes with the DDR pathway and impairs ATM and p53 activation.

ΔNp73 interacts with 53BP1 and localizes to sites of DNA damage

We next sought to investigate how ΔNp73 influences the activation of ATM and p53 in response to DNA damage. No differences in total ATM mRNA or protein levels was detected in ΔNp73−/− cells compared with wild-type cells after DNA damage, and no direct binding between ΔNp73 and ATM could be demonstrated [data not shown]. It has been shown previously that the complete activation of ATM and p53 depends on their interaction with 53BP1 [Zgeib et al. 2005]. Mice deficient for 53BP1 show enhanced tumor formation and decreased radiosensitivity, similar to mice deficient for p53 [Ward et al. 2003]. Crystal structure analysis has revealed that 53BP1 and p53 interact through the DNA-binding domain of p53 [Derbyshire et al. 2002]. Importantly, several residues critical for 53BP1–p53 interaction are conserved in ΔNp73 [Supplemental Fig. 5A]. Consequently, we tested whether ΔNp73 was able to bind to 53BP1. We transfected U2OS cells with HA-tagged ΔNp73α or ΔNp73β,
immunoprecipitated endogenous 53BP1, and detected direct binding of 53BP1 to ΔNp73β, but not to ΔNp73α, both before and after DNA damage (Fig. 7A). We could also observe binding with reverse immunoprecipitation when ectopically expressing 53BP1 and Flag-tagged ΔNp73β in U2OS cells (Supplemental Fig. 5B). To confirm that this interaction occurred at physiological levels of ΔNp73, we examined the binding between endogenous 53BP1 and endogenous ΔNp73. We therefore took advantage of a recently developed ΔNp73-specific antibody that can detect endogenous ΔNp73 (Sayan et al. 2005). We subjected extracts of neuroblastoma SH-SY5Y cells to immunoprecipitation with 53BP1 antibody followed by Western blotting using anti-ΔNp73 antibody and confirmed that 53BP1 can bind to endogenous ΔNp73β but not to ΔNp73α (Fig. 7B). Interestingly, the binding between 53BP1 and ΔNp73 was unaffected by DNA damage when the ΔNp73 protein was ectopically expressed, but was lost in irradiated cells with physiological levels of ΔNp73. The reduced binding between 53BP1 and ΔNp73β in the latter case is probably due to a reduction in levels of ΔNp73β protein present after DNA damage. Indeed, it has been reported previously that ΔNp73 is degraded upon DNA damage to allow for apoptosis (Maisse et al. 2004). In any case, we confirmed that binding occurred between ΔNp73β and 53BP1 in U2OS cells using the in situ proximity ligation assay (PLA), which allows detection of protein interaction in situ. Although a weak binding between ΔNp73 and 53BP1 occurred in untreated cells, this interaction was greatly enhanced in γ-irradiated cells (Fig. 7C).

To determine whether ΔNp73 could localize directly to sites of DNA damage, we used H2AX as a marker of DNA damage foci. Upon DNA damage, residue Ser139 of H2AX is phosphorylated by ATM within minutes, resulting in γ-H2AX. γ-H2AX then forms foci at DSB sites. In U2OS cells ectopically expressing ΔNp73, we could not detect

Figure 5. Increased p53 and ATM phosphorylation and activation in ΔNp73-deficient cells and tissues upon DNA damage. (A) Increased p53 protein levels. Wild-type and ΔNp73−/− MEFs were treated with 10 μM cisplatin for 16 h, and p53 protein was analyzed by Western blot. [B,C] Increased p53Ser18 and ATMSer1987 phosphorylation. Wild-type and ΔNp73−/− MEFs were treated with 1 μM DRB for a long [B] or short [C] time course as indicated, and total and phosphorylated p53 and ATM were analyzed by Western blot. [D] Increased ATMSer1987 phosphorylation in thymocytes. Wild-type and ΔNp73−/− thymocytes were γ-irradiated as indicated, and total and phosphorylated ATM levels were assessed by Western blot. [E] Increased ATMSer1987 phosphorylation and γ-H2AX induction in skin tissue. Skin tissue from wild-type and ΔNp73−/− mice were γ-irradiated as indicated, and total ATM, phosphorylated ATM, and γ-H2AX protein levels were assessed by Western blot. [F] The increased sensitivity to DNA damage in ΔNp73−/− thymocytes is ATM-dependent. Thymocytes from mice of the indicated genotypes were γ-irradiated as indicated, and apoptosis was determined 16 h later by Annexin V/PI staining and flow cytometry. DKO, ΔNp73−/− ATM−/− mice.
localization of the overexpressed ΔNp73 protein to DNA damage foci (data not shown). However, when we examined the colocalization of endogenous p73 and γ-H2AX in doxorubicin-treated H1299 nonsmall lung carcinoma cells, we found that these two proteins colocalized at DSB sites [Fig. 7D]. This could also be recapitulated with endogenous ΔNp73 and γ-H2AX in irradiated SH-SY5Y cells within 10 min of γ-irradiation [Fig. 7E]. These results indicate that ΔNp73 localizes to sites of DNA damage under physiological conditions.

Finally, to examine the effect of ΔNp73 depletion on the assembly of DNA damage foci, we used siRNA to knock down ΔNp73 expression in U2OS cells and analyzed focus formation in response to γ-irradiation. Indeed, depletion of ΔNp73 enhanced the degree of recruitment of 53BP1, p53, and γ-H2AX to DSB sites [Fig. 7F, Supplementary Fig. 5C]. These results show that endogenous ΔNp73 interacts with 53BP1 and localizes to sites of DNA damage, where ΔNp73 decreases the recruitment of DDR proteins to this site. ΔNp73 is thus a negative regulator of the DDR, consistent with the observation that ΔNp73 dysregulation promotes oncogenesis.

Discussion

Disruption of Tp73 results in profound neurological defects, but the relative contributions of the TAtp73 and ΔNp73 isoforms to this phenotype have not been investigated thoroughly due to a lack of isoform-specific mouse models. We addressed this problem by generating mice specifically deficient for TAtp73 or ΔNp73. We reported previously that TAtp73−/− mice showed hippocampal dysgenesis similar to that in Tp73-null mice, thus defining a role for TAtp73 in the development of the CNS [Tomasini et al. 2008]. With our present generation of mice specifically deficient for ΔNp73, and our observation of the neurodegeneration that occurs in these mutants as they age, we confirmed a neuroprotective function for the ΔNp73 isoform. This was also observed in a recent study by Tissir et al. (2009) that also constructed ΔNp73-null mice. In their mouse model, they noted that vomeronasal neurons and Cajal-Reizius cells were severely reduced in number, and that choroid plexuses were atrophic [Tissir et al. 2009]. It should be noted, however, that the severity of the neurological defects observed in the isoform-specific mouse models is not as dramatic as that reported for p73−/− mice, suggesting that TAtp73 and ΔNp73 may partially overlap in their functions. Furthermore, there are phenotypes observed in p73−/− mice that are not recapitulated in either of the isoform-specific mouse models, such as the severe chronic infections and inflammation that eventually kill p73−/− mice. This discrepancy suggests that either isoform may be able to compensate for the loss of the other in these latter biological processes. To fully resolve the functions of all p73 isoforms, mouse models bearing C-terminal-specific disruptions of Tp73 should be generated.

Several reports have indicated that ΔNp73 acts downstream from p53 as a transcriptional negative regulator that competes for binding motifs in target promoters [Grob et al. 2001; Zaika et al. 2002]. Our results are consistent with this hypothesis, since our ΔNp73-deficient MEFs exhibit increased levels of p21, Mdm2, and Puma under resting conditions. Interestingly, in response to DNA damage, higher mRNA levels of Mdm2 and Puma were induced in ΔNp73−/− MEFs compared with the wild type. This observation suggests that the loss of ΔNp73 makes some target promoters more accessible, thus directing the cell toward a particular biological outcome. In line with this theory, we observed an elevation in sensitivity to apoptotic stimuli in cells lacking ΔNp73. This increased sensitivity was lost in cells with a p53-null background, proving that ΔNp73 does indeed inhibit p53-dependent apoptosis.

A particularly interesting finding emerging from our study is that, compared with wild-type controls, no increase in apoptosis was detected in tumors developing from E1A/Ras+12 transformed ΔNp73−/− MEFs, even though loss of ΔNp73 greatly inhibits tumor-forming...
with anti-p73 antibody (green) and with antibody to detect the DNA damage focus marker γ-H2AX (red). Merged fluorescence shows that p73 colocalizes with γ-H2AX and DNA damage foci upon DNA damage. (E) Detection of endogenous ΔNp73 in DNA damage foci. SH-SY5Y cells were grown on coverslips, treated with 5 Gy γ-irradiation, and fixed after 10 min. Cells were stained with anti-ΔNp73 antibody (red) and with antibody to detect the DNA damage focus marker γ-H2AX (green). Merged fluorescence shows that ΔNp73 colocalizes with γ-H2AX and DNA damage foci upon γ-irradiation. (F) siRNA knockdown confirmation of ΔNp73 colocalization with DNA damage foci. U2OS cells expressing either control siRNA or siRNA against ΔNp73 were cultured for 48 h. Cells were then either left untreated or treated with 5 Gy γ-irradiation, fixed after 10 min, and immunostained to detect 53BP1 and p53. Confocal microscopy shows that depletion of ΔNp73 increases the recruitment and colocalization of 53BP1 (green) and p53 (red) to sites of DNA damage.

capacity in vivo. Instead, we observed an increase in senescence markers in tumor cells lacking ΔNp73. This phenomenon has also been reported in mouse models where p53 was restored in murine liver carcinomas or sarcomas [Ventura et al. 2007; Xue et al. 2007]. While restoration of p53 in these established tumors induced cellular senescence and tumor regression, restoration of p53 in lymphomas resulted in apoptosis. This body of evidence suggests that, not unexpectedly, the biological outcome of p53 activation is very much dependent on cellular context. Interestingly, we detected increased levels of the tumor suppressor p16INK4A, suggesting an involvement of the p16INK4A–RB pathway in the senescence phenotype triggered by loss of ΔNp73. Indeed, activation of the p16INK4A–RB axes is known to play a role in the establishment of senescence in tumors and to act in parallel to or overlapping with the Arf–p53 axes [Campisi and d’Adda di Fagagna 2007, Collado and Serrano 2010]. Notably, it has been shown that N-terminal-truncated isoforms of p73 inactivate RB by increased phosphorylation, thus triggering E2F activity and consequent cell proliferation [Stiewe et al. 2003]. Intriguingly, our data might unveil a p53-independent function of ΔNp73 in regulating tumor growth. Further investigations are needed to clarify and extend these findings.

We were surprised to detect not only higher levels of p53 target gene expression in ΔNp73−/− cells exposed to DNA damage, but also higher levels of the p53 protein itself. Because of the pivotal role p53 plays in controlling the cell cycle and cell death, this protein is tightly regulated at the transcriptional, translational, and post-translational levels [Fu et al. 1996; Ashcroft et al. 1999; Webster and Perkins 1999]. However, the most important way by which p53 protein levels are controlled is through Mdm2-mediated degradation. In response to DNA damage, p53 is stabilized via phosphorylation of N-terminal residues [Ser15 and Ser20 in humans; Ser18 and Ser23 in mice]. This phosphorylation interferes with Mdm2 binding to p53 and
prevents the proteasomal degradation of p53. To study the importance of p53Ser18 phosphorylation in p53-mediated responses, mouse models in which p53Ser18 is mutated have been created. Using such a model, Sluss et al. (2004) showed that phosphorylation of p53Ser18 is required for apoptosis and the induction of Puma that occur in response to DNA damage, but not for DNA damage-induced cell cycle arrest. Similarly, we found that an increase in p53Ser18 phosphorylation occurred in ΔNp73+/− cells following DNA damage, and that this increase was associated with enhanced apoptosis but not cell cycle arrest. Sluss et al. (2004) initially reported that, unlike p53-null mice, p53Ser18Ala mutants did not show accelerated tumorigenesis. However, re-examination of these mutants has revealed that they do, in fact, develop spontaneous tumors [predominantly B-cell lymphomas], but at a more advanced age than p53-null mice. Moreover, some of these p53Ser18Ala animals manifested symptoms of accelerated aging. Taken together, these data indicate that the ATM/ATR phosphorylation site Ser18 in p53 contributes to tumor suppression and organismal longevity (Armata et al. 2007), and perturbation of this pathway through elevated levels of ΔNp73 could contribute to tumor development.

Another intriguing observation coming out of our study was that we detected binding only between 53BP1 and ΔNp73β and not between 53BP1 and ΔNp73α. The reason for this could be due to structural differences between ΔNp73β and ΔNp73α proteins, since p73α proteins (TAp73α and ΔNp73α) contain a sterile α motif (SAM) domain in their extreme C-terminal. It is thought that the SAM domain prevents binding of p300/CREB to TAp73α, thus inhibiting the transcriptional activity of TAp73α (Liu and Chen 2005). It is possible that the SAM domain in ΔNp73α also inhibits the binding of 53BP1 to ΔNp73α as well.

The integrity of the DNA damage checkpoints is a crucial barrier against tumor development. Analysis of precancerous lesions [before p53 mutations are acquired] repeatedly reveals signs of an activated DDR, including 53BP1 focus formation and phosphorylation of ATM, Chk2, and p53 (Bartkova et al. 2005; Gorgoulis et al. 2005). Once these lesions progress to malignancy, the evidence of DNA damage still exists, but mutations in components of the DDR pathway abolish the checkpoint response [Halazonetis et al. 2008]. Our results suggest that the ΔNp73 isoform has a heretofore unsuspected role in the signaling pathway running from DSBs to the DDR pathway, and inhibits full activation of ATM and p53, possibly through its binding to 53BP1. Supporting ΔNp73's potential function as an oncogene, elevated levels of ΔNp73 have been found in neuroblastosomas and medulloblastomas, as well as in lung, liver, ovarian, and cervical cancers. Moreover, increased ΔNp73 expression in tumors has been correlated with chemotherapeutic failure and poor patient survival [Casciano et al. 2002; Uramoto et al. 2004; Concin et al. 2005; Muller et al. 2005; Liu et al. 2006; Zitterbart et al. 2007]. Our finding that ΔNp73 is a negative regulator of the DDR may explain why tumors with high levels of ΔNp73 show increased resistance to chemotherapy; thus, targeting ΔNp73 could be an effective weapon against several types of malignancies.

Materials and methods

Generation of ΔNp73+/− mice

Mutant mice deficient for Tprp73 exon 3, which is specific for ΔNp73 isoforms, were generated by conventional gene targeting procedures in Sv129/Ola embryonic stem [ES] cells. Four correctly targeted ES cell clones were selected for blastocyst injection. Blastocysts were transferred to pseudopregnant C57BL/6 female mice to generate chimeric mice. We obtained germline transmission of the targeted allele for all four ES cell clones. Littermate offspring that were wild type or heterozygous or homozygous for the mutated ΔNp73 allele were created by intercrossing ΔNp73+/− mice. Genotypes were confirmed by PCR analysis. The wild-type and KO ΔNp73 alleles were detected using the following primer pairs: wild-type sense, 5′-CAATAG CAGCCTTGTCCTGACTGAC-3′; wild-type antisense, 5′-GG TAGGCTGAGAGTGGAGAGGTTCC-3′; KO sense, 5′-GCTTCA TGGAGATAACCTCCTATATGAT-3′; KO antisense, 5′-GTAAG CTGGAGATGGAGAGATTTC-3′. Experiments were conducted using mice from all four ΔNp73 mouse strains, and on both the mixed background (F1 intercross, 129/B6) and the backcrossed C57BL/6 background (F5), with equal results. The p53+/− and ATM+/− mice were on C57BL/6 background. All animals were treated in accordance with the NIH Guide for Care and Use of Laboratory Animals as approved by the Ontario Cancer Institute Animal Care Committee.

Neuroanatomy

For histology, 10-mo-old mice (n = 4–5 per group) and 26- to 27-mo-old mice (n = 2 per group) were sacrificed by sodium pentobarbital overdose (Somnotol, MTC) and transcardially perfused with PBS followed by 4% paraformaldehyde. Tissues were cryoprotected and sectioned at 16 μm, and Nissl staining was performed as described [Pozniak et al. 2002]. Neuroanatomical parameters were measured in the motor cortex at the same rostrocaudal level, and were quantified in a strip of cortical tissue 325 μm wide that extended from the corpus callosum to the pial surface, as shown in Figure 2B. Cell density was calculated using the area of this strip and cell counts [Pozniak et al. 2002]. All digital image acquisition was performed using a Sony XC-75CE CCD video camera equipped with Northern Eclipse software (Empix, Inc.). Image processing was carried out using Image] analysis software (National Institutes of Health).

Cell lines

MEFs were prepared from embryonic day 13.5 [E13.5] wild-type and ΔNp73+/− littermate embryos and cultured in Dulbecco’s modified Eagle’s medium [DMEM] supplemented with 10% fetal bovine serum [FBS], 2 mM L-glutamine, and 55 μM β-mercaptoethanol. Cells at passages 2–4 were used for experiments. The same medium was used to maintain human tumor cells [U2OS osteosarcoma, SH-SY5Y neuroblastoma, and H1299 nonsmall lung carcinoma were from American Type Culture Collection; HCT116 [p53+/− and p53−/−] colon carcinoma cells were kindly provided by Dr. Bert Vogelstein, Johns Hopkins Oncology Center].
Wilhelm et al.

Real-time PCR

Total RNA was prepared using Trizol (Invitrogen) and treated with RNase-free DNase (Promega). Total RNA (1 µg) was used for cDNA synthesis using SuperScript III according to the manufacturer’s instructions (Invitrogen). Real-time PCR using SYBR green dye was carried out on an ABI 7700 (Applied Biosystems) according to the manufacturer’s instructions. Samples were run in triplicate and normalized to 18S RNA or GAPDH. Relative expression was calculated using the ΔΔCt method.

Western blotting

Protein extracts were prepared using NP-40 buffer (50 mM Tris-HCl at pH 8, 120 mM NaCl, 1% NP-40, protease inhibitor cocktail [Roche], phosphatase inhibitor [Roche]). Total protein (50 µg) was fractionated by SDS-PAGE. High-molecular-weight proteins (ATM and 53BP1) were separated using 3%–8% Tris-acetate gels (Invitrogen). Fractionated proteins were transferred to PVDF membranes (Millipore) using standard transfer techniques, or to nitrocellulose membranes using the iBlot system (Invitrogen). Blots were incubated with antibodies recognizing the following proteins: p53 (FL393 and D01; 1:1000), HA-probe (1:1000), and p16 (F12; 1:250) from Santa Cruz Biotechnologies; p21 (SXM03, 1:200), 53BP1 (mAb; 1:1000), and p53 (pAb240; 1:500) from BD Biosciences; Puma, phospho-p53Ser15, 53BP1 (Rb Ab), and phospho-ATM/ATR substrate [all used at 1:1000] from Cell Signaling Technology; phospho-ATM S1981 (1:500) from Rockland; ATM (2C1; 1:200) from GeneTex, Inc.; γ-H2AX (1:1000) from Upstate Biotechnologies; DcR2 (1:200) from GeneTex, Inc.; and ΔNp73-specific antibody (Rb Ab; 1:1000). Bands were visualized and quantified using the Odyssey Infrared Imaging System (LI-COR Bioscience).

Immunoprecipitation

To assess binding between 53BP1 and ΔNp73, U2OS cells (1 × 10⁶) were transfected with pcDNA [control], pcDNA-HA-ΔNp73a, or pcDNA-HA-ΔNp73b using Lipofectamine2000 according to the manufacturer’s instructions. Cells were lysed in Chaps buffer (40 mM HEPES at pH 7.5, 120 mM NaCl, 1 mM EDTA, 10 mM Na-pyrophosphate, 10 mM β-glycerophosphate, 50 mM NaF, 1 mM NaVO₃; 0.3% Chaps, protease inhibitor cocktail [Roche]) and precleared with protein G sepharose beads (Amersham). Immunoprecipitation was carried out using 500 µg of precleared protein lysate plus 1 µg of anti-53BP1 antibody [Rb]. To confirm reverse binding, pEGFPc1-53BP1 was transfected into U2OS cells stably expressing Flag-ΔNp73b, and cells were lysed in Chaps buffer. Immunoprecipitation was carried out using 500 µg of precleared protein lysate plus 1 µg of anti-Flag [M2, Sigma-Aldrich] covalently bound to protein G sepharose beads (Amersham). To assess the binding of endogenous 53BP1 and ΔNp73 proteins, SH-SYSY cells (1 × 10⁷) were treated with 5 Gy γ-irradiation and incubated for 10 or 60 min. Proteins were cross-linked for 10 min with 15 µM DSP [Dithiobis [succinimidyl propionate]; Pierce], lysed in Chaps buffer, and briefly sonicated. Protein extract (1 mg) was precleared with beads as above, and 1 µg of anti-53BP1 [BD Bioscience] was used for immunoprecipitation. Immunocomplexes were collected with protein G sepharose beads, washed in Chaps buffer, and boiled in 2× SDS sample buffer prior to Western blotting.

Immunofluorescence

Cells were grown directly on glass coverslips for 24 h before indicated treatment. Cells were then fixed and permeabilized with 2% paraformaldehyde–0.2% Triton X-100 for 10 min at room temperature, and further permeabilized by 20 min incubation in PBS–0.5% NP40. After 1 h of blocking in PBS–5% normal goat serum, cells were incubated overnight with the following antibodies: anti-phospho-H2AX [Upstate Biotechnologies], ΔNp73-specific antibody (Sayan et al. 2005), anti-53BP1 [BD Bioscience], and anti-p53 [Santa Cruz Biotechnologies]. All antibodies were diluted in blocking solution 1:100. After extensive washing in PBS, cells were incubated for 1 h at room temperature with fluorophore-conjugated secondary antibodies [1:1000; Invitrogen]. Nuclei were detected by DAPI staining. Images were acquired and analyzed using a Zeiss LSM510 confocal microscope.

We also used the Duolink in situ PLA from Olink Bioscience to detect interactions between 53BP1 and ΔNp73. Briefly, U2OS cells were transfected with a plasmid encoding ΔNp73 and plated 24 h later on glass coverslips. At 48 h post-transfection, the cells were fixed as described above. The fixed cells were incubated with the following primary antibodies: mouse mAb against p73 [Neomarker Ab4] and rabbit pAb against 53BP1 [Cell Signaling]. The Duolink system provides oligonucleotide-labeled secondary antibodies [PLA probes] to each of the primary antibodies that, in combination with a DNA amplification-based reporter system, generate a signal only when the two primary antibodies are in close proximity. The signal from each detected pair of primary antibodies was visualized as a spot [please see the manufacturer’s instructions for more details].

Statistical analysis

Apoptosis data and tumor weight were analyzed by Student’s t-test, data are presented as mean ± SD, and P-values <0.05 were considered statistically significant. Tumor kinetics were analyzed by two-way ANOVA using GraphPad Prism, and presented
as mean ± SEM. P-values for offspring distribution were calculated by χ² using GraphPad Prism.

Acknowledgments

We gratefully acknowledge C. Gorrini for technical advice and helpful discussions, and M.E. Saunders for scientific editing. This work was supported by grants from the Canadian Institute of Health Research, Åke Wiberg foundation (M.T.W.), and O.E. and Edla Johansson foundation (M.T.W.). M.T.W., A.R., K.T., S.I., R.T., A.I., and A.W. conducted research for the paper. M.T.W., A.R., and T.W.M., wrote the paper. We all discussed the results and read the paper.

References

ΔNp73 in the DNA damage response

ΔNp73 is a p53 isoform that is generated by alternative splicing and is localized to the cytoplasm in response to DNA damage. In this study, we investigated the role of ΔNp73 in the DNA damage response. We found that ΔNp73 is activated by DNA damage and mediates the G1-S checkpoint. ΔNp73 regulates the expression of p21, a negative regulator of the cell cycle, and this regulation is mediated by the p53 transcription factor. Additionally, we observed that ΔNp73 promotes cell survival and inhibits apoptosis in response to DNA damage. These findings suggest that ΔNp73 plays a crucial role in the DNA damage response and may be involved in the development of cancer.

Isoform-specific p73 knockout mice reveal a novel role for ΔNp73 in the DNA damage response pathway

Margareta T. Wilhelm, Alessandro Rufini, Monica K. Wetzel, et al.

Genes Dev. 2010 24: 549-560 originally published online March 1, 2010
Access the most recent version at doi:10.1101/gad.1873910

Supplemental Material
http://genesdev.cshlp.org/content/suppl/2010/02/24/gad.1873910.DC1

References
This article cites 47 articles, 25 of which can be accessed free at:
http://genesdev.cshlp.org/content/24/6/549.full.html#ref-list-1

Articles cited in:
http://genesdev.cshlp.org/content/24/6/549.full.html#related-urls

Related Content
"Np73² puts the brakes on DNA repair"
Emma Vernersson-Lindahl and Alea A. Mills
Genes Dev. March 15, 2010 24: 517-520

Email Alerting Service
Receive free email alerts when new articles cite this article - sign up in the box at the top right corner of the article or click here.

To subscribe to *Genes & Development* go to:
http://genesdev.cshlp.org/subscriptions