Semaphorin controls epidermal morphogenesis by stimulating mRNA translation via eIF2α in *Caenorhabditis elegans*

Akira Nukazuka, Hajime Fujisawa, Toshifumi Inada, Yoichi Oda, and Shin Takagi¹

Conserved semaphorin–plexin signaling systems govern various aspects of animal development, including axonal guidance in vertebrates and epidermal morphogenesis in *Caenorhabditis elegans*. Here we provide in vivo evidence that stimulation of mRNA translation via eukaryotic initiation factor 2α (eIF2α) is an essential downstream event of semaphorin signaling in *C. elegans*. In semaphorin/plexin mutants, a marked elevation in the phosphorylation of eIF2α is observed, which causes translation repression and is causally related to the morphological epidermal phenotype in the mutants. Conversely, removal of constraints on translation by genetically reducing the eIF2α phosphorylation largely bypasses requirement for the semaphorin signal in epidermal morphogenesis. We also identify an actin-depolymerizing factor/cofilin, whose expression in the mutants is predominantly repressed, as a major translational target of semaphorin signaling. Thus, our results reveal a physiological significance for translation of mRNAs for cytoskeletal regulators, linking environmental cues to cytoskeletal rearrangement during cellular morphogenesis in vivo.

Keywords: C. elegans; cofilin; eIF2; epidermal morphogenesis; mRNA translation; semaphorin

Supplemental material is available at http://www.genesdev.org.

Received December 18, 2007; revised version accepted February 27, 2008.
have been identified as targets to be translated in response to Sema3A and other guidance cues such as Slit2 and Netrin-1. Thus, cytoskeletal reorganization mediated by synthesis of cytoskeletal regulators and/or components is suggested to be a fundamental mechanism for cue-induced axonal navigation. In spite of these understandings, however, the functional significance of translational regulation in semaphorin signaling in vivo has not been addressed. In order to gain insight into semaphorin signaling in vivo, we used the genetic analysis in nematode *Caenorhabditis elegans*, where two membrane-bound semaphorins interact with an A-type plexin to regulate morphogenesis of epidermal tissues including the “rays” in the male tail (Fujii et al. 2002; Ginzburg et al. 2002; Dalpe et al. 2004).

In this study, we present several lines of in vivo evidence that the semaphorin–plexin signal regulates the phosphorylation level of eIF2α and stimulates translation. Furthermore, we identify cofilin as a key functional target of translation in response to semaphorin. Our results reveal a physiological significance for regulated translation of mRNA species, especially those relevant to cytoskeletal regulation, which provides some clues to the mechanism that links environmental cues to cytoskeletal reorganization underlying alteration of cell morphology in vivo.

Results

A role for semaphorin–plexin signaling in the epidermal ray morphogenesis

We have shown previously that in *C. elegans* membrane-bound semaphorins (SMP-1 and SMP-2, SMPs) interact with an A-type plexin (PLX-1) to regulate the morphogenesis of epidermal tissues including the rays: nine bilateral pairs of sensilla enveloped in a cuticular fan in the male tail (Fujii et al. 2002; Ginzburg et al. 2002; Dalpe et al. 2004).

In wild-type adults, ray 1, the anterior-most ray, is mostly found juxtaposed to its neighboring ray 2 (“Level 1” phenotype) (Fig. 1A). In contrast, in *plx-1(nc37, ev724)* single and *smp-1(ev715) smp-2(ev709)* double mutant adults, ray 1 is frequently displaced anteriorly (Fig. 1B, C). The displaced ray 1 is often found outside of a fan (“Level 3” phenotype), and in some cases ray 1 is separate from ray 2 within a fan (“Level 2” phenotype) (see Supplemental Fig. S1 for examples of the three levels).

Previous studies showed that the SMPs–PLX-1 system determines the position of ray 1 by regulating the shape and arrangement of epidermal ray precursor cells (Fujii et al. 2002; Ginzburg et al. 2002; Dalpe et al. 2004). On each side of a larval male tail are nine epidermal cell-derived R(n) cells, each of which divides to give rise to Rn.a and Rn.p (*n* = 1–9). Through successive divisions, each Rn.a becomes a ray precursor cluster comprising three cells that later develops into a mature ray (Sulston et al. 1980; Emmons 2005). Examination of ray precursor cells with the adherens junction marker *ajm-1*:gfp (Baird et al. 1991; Mohler et al. 1998) revealed that the ray 1 phenotype in the mutant adults results from the abnormal shaping of R1.p, which consequently affects the arrangement of ray precursor cluster 1 (Fig. 1E–G; Fujii et al. 2002). The ray 1 phenotype in *plx-1* adults is remarkably rescued by driving expression of *plx-1* under the *lin-32* promoter (*lin-32*p) (Fig. 1I; Nakao et al. 2007). Since in larval males the *lin-32*p drives gene expressions pre-
dominantly in nine R(n) cells and their descendants (Supplemental Fig. S2; Portman and Emmons 2000), where expressions of SMPs and PLX-1 overlap (Fujii et al. 2002, Ginzburg et al. 2002), it is likely that the SMPs–PLX-1 signal in epidermal ray precursor cells is responsible for their morphogenesis.

Loss of a GCN1 homolog function suppresses the ray 1 phenotype

To gain insight into SMPs signaling, we conducted a screen for mutations that suppress the ray 1 phenotype in *plx-1* mutants. One isolated mutation, *nc40*, suppressed the ray defect in *plx-1* as well as that in *smp-1* and *smp-2* mutants (Fig. 1D,H,I). *nc40* single mutants displayed normal ray configuration (Supplemental Tables S1, S2).

nc40 was mapped to the clone Y48G9A on the left arm of linkage group III. Sequencing revealed that *nc40* is a 6880-base-pair (bp) deletion between nucleotides 90,212 and 97,091 on Y48G9A, including four microRNA genes and part of the GCN1 homolog-encoding gene (termed “gcn-1”) (Supplemental Fig. S3A). We cloned the *gcn-1* cDNA and found the gene to be a composite of Y48G9A.1, Y48G9A.2, and Y48G9A.3, which had been registered as three separate genes in WormBase (http://www.wormbase.org, Supplemental Fig. S3A). RNAi against *gcn-1* in *plx-1* mutants suppressed the ray 1 phenotype, and *lin-32p*-driven *gcn-1* expression markedly reversed the suppression by *nc40* (Fig. 1I), confirming that loss of *gcn-1* function was responsible for suppressing the ray defect in *plx-1*/*smp-1*/*smp-2* mutants. The sequence corresponding to the 12th and the 13th exons are entirely deleted in the *nc40*-type *gcn-1* transcript, which is presumably translated into a truncated form of GCN-1 protein. The deleted region, between amino acids 895 and 1138, is reportedly necessary for GCN1 function in yeast (Sattlegger and Hinnebusch 2000). In addition, *nc40* in *trans* to a deficiency (*nc40/*tdF9*) suppressed the ray 1 phenotype in *plx-1* adults equally to the *nc40* homozygotes (Supplemental Table S1), indicating that *nc40* acts genetically as a null allele of *gcn-1*.

GCN1, conserved among eukaryotes (Supplemental Fig. S3B), is known to function as a negative regulator for the translation initiation of global mRNAs (Marton et al. 1993). A trimeric GTPase eIF2, composed of α, β, and γ subunits, forms a ternary complex with GTP and Met-tRNA$_{Met}$ and participates in the initiation of translation by recruiting Met-tRNA$_{Met}$ to the 40S ribosomal subunit (Hershey and Merrick 2000). In yeast and mammalian cells, GCN1 activates the serine/threonine kinase GCN2 in response to nutrient limitation, which in turn phosphorylates the specific serine residue of eIF2α. On the phosphorylation of eIF2α, eIF2 forms a stable complex with eIF2B, a guanine nucleotide exchange factor, to prevent the recycling between a GDP-bound and a GTP-bound state, and thereby global translation initiation is inhibited (Hinnebusch 2000). Paradoxically, however, the eIF2α phosphorylation also increases the rate of translation of a few selected mRNAs (Holcik and Sonenberg 2005).

The 49th serine residue of a *C. elegans* eIF2α homolog, which is encoded by the Y37F3.10 gene (Rhoads et al. 2006), is the putative phosphorylation site, as predicted by the complete identity of the surrounding residues among eukaryotes (Supplemental Fig. S4), suggesting the conserved regulatory mechanism of the eIF2α phosphorylation. We carried out Western blot analysis to detect the level of eIF2α phosphorylation (P-eIF2α) in wild-type and *gcn-1* mutant larvae at stage 1 (L1). In *gcn-1* mutants, a reduction in P-eIF2α to 28% of wild type was observed (Fig. 2A), indicating that GCN-1 does participate in the eIF2α phosphorylation.

Loss-of-function mutations in a PERK gene suppress the ray defect

In metazoans, a kinase PERK, which is activated by unfolded protein response, phosphorylates eIF2α at the same residue as GCN1 signaling (Ron and Harding 2000). Although less pronounced than *gcn-1*, loss-of-function mutations in a *C. elegans* PERK homolog, *pek-1* (Shen et al. 2001), also suppressed the ray defect in *plx-1/*smp-1/*smp-2* mutants (Fig. 1I, Supplemental Table S2) and reduced P-eIF2α (Fig. 2A). In addition, the *gcn-1*; *pek-1* double mutation suppressed the ray 1 phenotype in *plx-1* adults and reduced P-eIF2α more strongly than either single mutation (Figs. 1I, 2A).

The semaphorin signal lowers the eIF2α phosphorylation

The finding that mutations that diminish P-eIF2α suppressed the ray defect in *plx-1/*smp-1/*smp-2* mutants prompted us to examine whether the SMP’s signal regulates the ray morphogenesis by controlling P-eIF2α. We first compared P-eIF2α in wild type with that in *plx-1*/*smp-1*/*smp-2* mutants at the L1 stage, when the proportion of cells expressing SMPs/PLX-1 in the whole body is large. In the mutants, an ∼1.6-fold increase in P-eIF2α was observed (Fig. 2A), indicating that the SMPs signal is necessary to keep P-eIF2α low. Next, we prepared a *plx-1* mutant line expressing *plx-1* transcripts under a heat-shock promoter (*hs*), and compared P-eIF2α before and after heat shock (*HS*). Induced expression of PLX-1 reduced P-eIF2α to a wild-type level by 2 h after HS (Fig. 2B). In addition, we analyzed P-eIF2α in a line expressing both *smp-1* and *plx-1* transcripts under *hs*. Induced co-expression of *smp-1* and PLX-1 in the whole body of wild-type animals resulted in a reduction of P-eIF2α to 58% of a control (Fig. 2B). Thus, the reduction in P-eIF2α is indicated to be a direct and acute consequence of SMPs signaling.

Furthermore, the introduction of *gcn-1* and/or *pek-1* mutations to *plx-1* mutants reduced P-eIF2α (Fig. 2A), which correlated with the degree of suppression of the eIF2α phosphorylation signal.
ray 1 phenotype. The presence of the plx-1 mutation slightly increased P-eIF2α in gcn-1, pek-1, or gcn-1; pek-1 mutants [Fig. 2A], indicating that neither the gcn-1 nor pek-1 mutation alone is completely epistatic to the plx-1 mutation in respect to P-eIF2α. This suggests that the SMPs signal may simultaneously inactivate multiple pathways involved in the eIF2α phosphorylation, including GCN-1-dependent and PEK-1-dependent pathways. Alternatively, the signal might activate eIF2α phosphatase(s).

A semaphorin-induced reduction in the eIF2α phosphorylation is essential for the proper epidermal ray morphogenesis

To investigate further the causal relationship between P-eIF2α and the ray phenotype, we used a line expressing Flag-tagged eIF2α under the lin-32 promoter and analyzed P-eIF2α in the Flag immunoprecipitates from transgenic males at the L3-L4 stage. During this period, which is crucial for ray positioning by SMPs, the majority of immunopre-
pressed the ray 1 phenotype in plx-1/H9251 expressing the phosphomimetic eIF2 likely to depend on SMPs signaling. gcn-1 Likewise, nonphosphorylatable eIF2/H9251/eIF2\(^{\text{P-eIF2}}\) mutants can be attributed, at least partly, to elevated suggesting that the distorted ray morphogenesis in the males, they often exhibited a ray defect (Fig. 2D–F), sug-der the lin-32 mutants at the L3–L4 stage (Fig. 2C). Thus, the reduction in P-eIF2\(^{\text{A}}\) in wild-type ray precursor cells is likely to depend on SMPs signaling.

Next, we examined the phenotype in transgenic males expressing the phosphomimetic eIF2\(^{\text{A}}\) eIF2\(^{\text{(S49D)}}\) under the lin-32p. Similarly to plx-1/smp-1 mutant males, they often exhibited a ray defect (Fig. 2D–F), suggesting that the distorted ray morphogenesis in the mutants can be attributed, at least partly, to elevated P-eIF2\(^{\text{A}}\). Conversely, another transgene expressing the nonphosphorylatable eIF2\(^{\text{A}}\) eIF2\(^{\text{(S49A)}}\) partially suppressed the ray 1 phenotype in plx-1 adults (Fig. 2F). Likewise, gcn-1 and/or pek-1 reductions reduced P-eIF2\(^{\text{A}}\) in the plx-1 mutant background in lin-32-expressing cells (Fig. 2C; Supplemental Fig. S5), suggesting that suppression of the ray defect in plx-1/smp-1 mutant mutants is largely dependent on reduced P-eIF2\(^{\text{A}}\) in ray precursor cells. These results indicate that the SMPs signal serves to lower P-eIF2\(^{\text{A}}\) in ray precursor cells, which contributes to the proper positioning of ray 1.

Having characterized the roles for GCN-1 and PEK-1, we reasoned that knockdown of a GCN2 homolog, Y81G3A.3, would likewise suppress the ray 1 phenotype in plx-1/smp-1 mutant mutants and reduce P-eIF2\(^{\text{A}}\). Y81G3A.3 protein seems to have an eIF2\(^{\text{A}}\) kinase activity as evidenced by a reduction in P-eIF2\(^{\text{A}}\) in Y81G3A.3 mutant whole ani-mals [Supplemental Fig. S6B,C]. Unexpectedly, however, the Y81G3A.3 mutations neither suppressed the ray 1 phenotype in plx-1 adults [Supplemental Fig. S6A] nor significa-nificantly reduced P-eIF2\(^{\text{A}}\) in lin-32-expressing cells at the L3–L4 stage [Supplemental Fig. S6B]. Thus, it is implied that Y81G3A.3 protein plays only a minor role as an eIF2\(^{\text{A}}\) kinase in ray precursor cells and that GCN-1 signaling relies on yet-undefined eIF2\(^{\text{A}}\) kinase(s).

Down-regulated protein synthesis is causally related to the ray defect

Elevated P-eIF2\(^{\text{A}}\) is known to mediate global translation inhibition as well as translation stimulation of certain mRNA species [Holcik and Sonenberg 2005], prompting us to examine whether repressed or enhanced translation causes the ray defect. eIF2 and eIF4F complexes and translation elongation factors [eEFs] play indispensible roles in translation, whereas eIF4E-binding protein [4E-BP] represses translation by interfering with eIF4E [Hershey and Merrick 2000]. RNAi against eIF2\(^{\text{A}}\), eIF2\(^{\beta}\)/ifb-1, eIF4G/\text{ifg-1} (a component of eIF4F), eEF2/\text{eft-1}, and eEF2/\text{eft-2} [Rhoads et al. 2006] all caused the growth defect, but animals that survived into the L4 and adult stages exhibited the ray defect similarly to plx-1/smp-1 mutant mutants (Fig. 3). In contrast, RNAi against \text{spn-2}, a gene-encoding protein that has partial homology with mamma-lian 4E-BP and might be its counterpart in \text{C. elegans} [W. Li and L. Rose, pers. comm.], partially suppressed the ray 1 phenotype in plx-1 mutants [Fig. 3G]. Thus, these results argue that down-regulated translation is causally related to the ray defect in plx-1/smp-1 mutant mutants.

Semaphorin preferentially stimulates translation of unc-60A/cofilin in a manner dependent on its 3' untranslated region (UTR)

Having established a role for the SMPs signal in translation stimulation, what are the key translational targets?

Figure 3. Down-regulated translation is causally related to the ray defect. Knockdown of translational machineries including eIF2\(^{\text{A}}\) (A,D), eIF2\(^{\beta}\) (B,E), and eIF4G (C,F) causes a ray defect. (C) Quantitative ray 1 phenotype in adult males treated with the indicated RNAi. Note that knockdown of eEF2 \text{eft-1 and eft-2} causes a ray defect, while knockdown of \text{spn-2} partially suppresses the ray 1 phenotype in plx-1.
One particular candidate is ADF/cofilin, whose vertebrate ortholog is suggested to be a downstream component of Sem3A signaling ([Azizawa et al. 2001; Piper et al. 2006]). C. elegans cofilin ortholog is encoded by unc-60, which produces two functionally distinct isoforms, UNC-60A and UNC-60B ([Ono and Benian 1998]). Since UNC-60B is expressed specifically in muscles, we turned to the analysis of ubiquitously expressed UNC-60A.

We compared the expression level of UNC-60A in L1 whole animals. In plx-1/smp-1 smp-2 mutants, UNC-60A expression was decreased to 67% of wild type. The gcn-1 mutation, which did not affect UNC-60A expression alone, restored it to 82% of wild type in the plx-1 mutant background [Fig. 4A], consistent with the notion that reduced P-eIF2α leads to enhanced protein synthesis. The amount of unc-60A transcripts in L1 animals was comparable among wild type and plx-1/smp-1 smp-2 mutants by Northern blot analysis [Supplemental Fig. S7], indicating that UNC-60A expression in the mutants is repressed at the translational or the post-translational level.

We also analyzed the time course of SMPs-induced UNC-60A synthesis in plx-1 mutants carrying the hsp::plx-1 transgene at the L1 stage [Fig. 4B]. The UNC-60A expression level did not differ from that of untreated animals at 2 h after HS, the time sufficient to rescue the elevated P-eIF2α phenotype in the mutants. At 3 and 4 h after HS, however, it increased significantly and reached a wild-type level. Thus, it is suggested that the SMPs signal can acutely reduces P-eIF2α in the mutants. Intriguingly, R(1)α+p and R(2)α+p units displayed more pronounced decreases in expression of mRFP than those of EGFP in the mutants [Fig. 5B,C]. Since unc-604 expression is absent in ray precursor cells, and thus its 3′UTR is unlikely to confer translational specificity by the SMPs signal, decreased EGFP expression in the mutants indicates globally down-regulated gene expression, consistent with elevated P-eIF2α in the mutants. In contrast, in R(5)α+p, decreases in expression of mRFP were comparable with those of EGFP in the mutants [Fig. 5B,C]. Similar phenotypes were observed in another line expressing mRFP with unc-54 3′UTR and EGFP with unc-60A 3′UTR under the lin-32p [Supplemental Fig. S9]. Thus, these results suggest that the SMPs signal stimulates global translation and simultaneously activates unc-60A translation in a target gene and cell type-specific manner.

Translation of unc-60A/cofilin mediates the semaphorin-regulated ray morphogenesis

Predominant repression of unc-60A 3′UTR-dependent protein expression in R(1)α+p and R(2)α+p units appears...
to correspond with the structural ray phenotype in

\[\text{plx-1} / \text{smp-1 smp-2} \]

mutants, leading us to suspect that \(\text{unc-60A} \) translation is essential for the SMPs-regulated ray morphogenesis. Consistently, RNAi against \(\text{unc-60A} \) caused, in addition to the growth defect, a highly penetrant ray defect similarly to the \(\text{plx-1} / \text{smp-1 smp-2} \) mutations (Fig. 6A–C).

\[\text{unc-60A} \] RNAi in the \(\text{gcn-1} \) mutant background caused a ray defect as severely as in the wild-type background (Fig. 6C), suggesting that \(\text{unc-60A} \) genetically functions downstream from the translational regulation. Despite the similar ray defect as in \(\text{plx-1} / \text{smp-1 smp-2} \) mutants, \(\text{unc-60A} \) RNAi did not change P-eIF2α/H9251 (Fig. 6D), implying that elevated P-eIF2α is a cause, but not a consequence, of the morphological defect in \(\text{plx-1}/\text{smp-1 smp-2} \) mutants.

Furthermore, expression of \(\text{unc-60A} \) transcripts with \(\text{unc-54} \) 3′UTR under the \(\text{lin-32p} \) [\(\text{lin-32p}:\text{unc-60A}:\text{unc-54} \) 3′UTR] partially suppressed the ray 1 phenotype in \(\text{plx-1/smp-1 smp-2} \) adults (Fig. 6E), indicating a functional link between SMPs–PLX-1 and UNC-60A during the ray morphogenesis. In contrast, \(\text{unc-60A} \) transcripts with \(\text{unc-60A} \) 3′UTR [\(\text{lin-32p}:\text{unc-60A}:\text{unc-60A} \) 3′UTR] failed to suppress the ray 1 phenotype in the mutants (Fig. 6E), implicating unsuccessful synthesis of UNC-60A in the absence of the SMPs signal with this transgene, which is insufficient for the proper ray morphogenesis. Taken together, we speculate that, in addition to enhancing global translation mainly by reducing P-eIF2α, the SMPs signal uses 3′UTR of \(\text{unc-60A} \) to allow its selective translation, and that synthesized UNC-60A regulates the epidermal morphogenesis for the proper ray 1 positioning, probably by accelerating actin cytoskeletal turnover and shaping ray precursor cells.

Discussion

Here, our study on *C. elegans* provided the in vivo demonstration that translation stimulation is an essential downstream event of the SMPs–PLX-1 signal during the cellular morphogenesis. Our genetic approach enabled us to provide several lines of evidence that the SMPs signal uses elf2α as a major translational regulator. First, in \(\text{plx-1/smp-1 smp-2} \) mutants, P-elf2α was elevated in ray precursor cells (Fig. 2C), implying down-regulated protein synthesis. Second, expression of the phosphomimetic elf2α mimicked the ray defect in the mutants (Fig. 2D–F), suggesting that the mutant phenotype is at least partly attributed to elevated P-elf2α. Third, the ray defect in the mutants was markedly suppressed by genetically reducing P-elf2α (Figs. 1, 2), suggesting that upregulated protein synthesis largely bypasses the requirement for the SMPs signal. Thus, our results reveal both requirement and sufficiency of mRNA translation stimulation via elf2α in the SMPs-regulated epidermal ray morphogenesis.

elf2α phosphorylation has been hitherto regarded as a...
Knockdown of adult males of the indicated genotypes. (***)

Figure 6. UNC-60A mediates the SMPs-regulated ray morphogenesis. (A,B) Knockdown of unc-60A phenocopies plx-1/smp-1 smp-2. (C) Quantitative ray 1 phenotype in adult males of the indicated genotypes. (D) Knockdown of unc-60A does not elevate the level of P-eIF2α. Samples were treated with the indicated RNAi were collected as in Figure 2C, and the Flag immunoprecipitates were subjected to Western blot analysis. Shown in the graph are the means of normalized P-eIF2α ± SEM of three independent experiments. (***) P < 0.001. (E) Quantitative ray 1 phenotype in plx-1/smp-1 smp-2 mutant adults carrying the indicated transgenes. Note that expression of unc-60A transcripts fused with unc-54 3′UTR, but not with unc-60A 3′UTR, partially suppresses the ray 1 phenotype in the mutants.

stress-induced event, and its involvement in semaphorin signaling is unexpected. Our results, however, indicate a direct effect of the SMPs signal on reducing P-eIF2α. Forced expression of SMP-1 and PLX-1 was sufficient to quickly reduce P-eIF2α in otherwise normal wild-type animals [Fig. 2B], indicating that increase in P-eIF2α in plx-1/smp-1 smp-2 mutants is not a consequence of possible cellular stresses due to morphological defects in the mutants, but is caused by failure to reduce P-eIF2α due to lack of SMPs signaling. This notion is supported by the finding that P-eIF2α in PLX-1-expressing ray precursor cells is lower than that in PLX-1-absent muscle cells [Fig. 2C]. In agreement with our proposal, independent studies have revealed that BDNF treatment [Takei et al. 2001], fibroblast adhesion [Gorrini et al. 2005], and L-LTP-inducing protocol [Costa-Mattioli et al. 2005, 2007] enhance translation by reducing P-eIF2α. The regulation of P-eIF2α also has physiological roles in various developmental events [Harding et al. 2001; Shen et al. 2001; Fang et al. 2003], which indicates the involvement of signals unrelated to stress in multiple aspects of eIF2α-mediated biological processes.

Suppression of the ray defect in plx-1/smp-1 smp-2 mutants by gcn-1; pek-1 mutation was highly but not fully penetrant [Fig. 1I], despite the fact that P-eIF2α in the mutants was even lower than that in wild type [Fig. 2C], implicating mechanism[s] other than the eIF2α regulation as another branch of SMPs signaling. The finding of selective translation via unc-60A mRNA 3′UTR by the SMPs signal [Fig. 5; Supplemental Fig. S9] also suggests this possibility [discussed below]. Considering our findings that knockdown of eIF4G phenocopied plx-1/smp-1 smp-2 mutants and that knockdown of putative 4E-BP, spin-2, partially suppressed the ray 1 phenotype in plx-1 mutants [Fig. 3], eIF4F complex formation might be another possible target event of SMPs signaling. This speculation agrees with the previous finding that eIF4F complex formation is regulated by Sem3A via mTOR, a well-known eIF4F regulator, in vertebrate neurons [Campbell and Holt 2001]. Thus, we hypothesize that the SMPs signal up-regulates translation by reducing P-eIF2α and simultaneously activating eIF4F complex during the ray morphogenesis. Indeed, other studies have shown that eIF2 and eIF4F complex formations are sometimes regulated coordinately [Takei et al. 2001; Gorrini et al. 2005], and that there is a cross-talk between eIF2α and mTOR [Cherkasova and Hinnebusch 2003; Kubota et al. 2003]. Given that both complex formations are the rate-limiting steps in translation [Hershey and Merrick 2000], this hypothesis appears reasonable.

We identified cofilin/UNC-60A as a potent target synthesized in response to the SMPs signal [Fig. 4], which coincides with the recent report on rapid cofilin synthesis by Sem3A application in vertebrate neurons [Piper et al. 2006]. Aizawa et al. [2001] reported that Sem3A induces a rapid elevation and a subsequent reduction in the cofilin phosphorylation during the growth cone collapse, indicating the importance of a cycle of cofilin between activation and inactivation. It is not known whether such an activation–inactivation cycle exists for UNC-60A in C. elegans, whose genome lacks any genes for a cofilin kinase LIM-kinase [Arber et al. 1998; Yang et al. 1998] and a phosphatase, Slingshot [Niwa et al. 2002].
Nevertheless, UNC-60A is known to play a role in F-actin depolymerization [Ono and Benian 1998], which we consider may be important for the arrangement of ray precursor cells as a downstream event of SMPs signaling. It is documented that each ray precursor cluster is positioned at the junctional site between two adjacent Rn.ps [Baird et al. 1991]. Indeed, in plx-1 mutants, the boundary between R1.p and R2.p shifts anteriorly, causing the anterior displacement of ray precursor cluster 1 to its normal position [Fujii et al. 2002]. Notably, we found that in R(1) a.p and R(2) a.p units of plx-1/smp-1 smp-2 mutants, prominent repression of unc-60A 3′UTR-dependent translation appeared to precede their defective morphogenesis [Fig. 5; Supplemental Fig. S9], suggesting that down-regulated UNC-60A expression is a major cause of the structural ray phenotype. Expectedly, unc-60A knockdown phenocopied plx-1/smp-1 smp-2 mutants, and forced expression of UNC-60A partially suppressed the ray defect in the mutants [Fig. 6]. In contrast to R(1) a.p and R(2) a.p, the SMPs signal appeared to have a relatively minor effect on unc-60A 3′UTR-dependent translation in the R(5) a.p unit [Fig. 5], which could account for the apparent lack of positional defects in ray 5 in plx-1/smp-1 smp-2 mutants. Taken together, we propose that the SMPs signal preferentially stimulates UNC-60A synthesis in R1.p and R2.p, and hence determines the position of ray 1 by posteriorly shifting the boundary between the two cells.

In cultured vertebrate growth cones, guidance cues rapidly activate translation in minutes at the site close to their application [Campbell and Holt 2001]. Although our Western blot analysis using the hsp::plx-1 rescue construct showed that unc-60A translation is initiated from 2–4 h after HS [Figs. 2B, 4B], the time necessary for the production of functional PLX-1 molecules after HS is not known, leaving the likely time scale of the SMPs translation events in the epidermal system undetermined. Considering that R1.p makes contact with R2.p until their fusion, and that PLX-1 expression in ray precursor cells lasts throughout their development [Fujii et al. 2002], the SMPs signal may stimulate protein synthesis, including UNC-60A, continuously, rather than transiently. Future examination of the spatiotemporal pattern of signaling events would provide further clues to the mechanism of cellular morphogenesis regulated by SMPs-induced UNC-60A synthesis.

In cultured vertebrate neurons, several guidance cues activate the common translational regulators [eIF4E and 4E-BP1], but they stimulate translation of different kinds of proteins that generate distinct cellular responses, depending on whether they are attractive cues or repulsive ones [Wu et al. 2005; Leung et al. 2006; Piper et al. 2006]. mRNAs for cytoskeletal regulators/components like β-actin [Zhang et al. 2001; Leung et al. 2006] and RhoA [Wu et al. 2005], for instance, contain motifs in their 3′UTRs that are implicated in their selective translation in response to these cues. Similarly to such gene-specific regulation, we found preferential stimulation of unc-60A 3′UTR-dependent translation by the SMPs signal. Since in most of the known cases 3′UTR-mediated translational regulation involves the interference with eIF4F assembly at the 5′ cap of mRNAs by 3′UTR-binding translational repressors, the SMPs signal might inhibit the repressors so as to enable the preferential unc-60A mRNA translation. This idea is supported by the presence of a putative cytoplasmic polyadenylation element (CPE) in its 3′UTR [Supplemental Fig. S8], a consensus sequence that, via its binding protein CPEB, can be targeted by such translational repressors [Mendez and Richter 2001]. An alternative unprecedented idea is that the SMPs signal might stimulate 3′UTR-dependent unc-60A translation via the regulation of elf2α. A possible scenario would be that elf2 ternary complex binding to the 40S ribosomal subunit in the 43S preinitiation complex is destabilized in the presence of the presumptive targets bound to unc-60A 3′UTR, which can be overcome as the SMPs signal lowers elf2α phosphorylation and increases the level of ternary complex formation.

Only partial suppression of the ray 1 phenotype in plx-1/smp-1 smp-2 mutants by UNC-60A expression [Fig. 6E] implies that a protein other than UNC-60A is also synthesized by and required for SMPs signaling. Other cytoskeletal regulators/components might be possible targets of translational regulation. One candidate is RhoA, whose transcripts display localized distribution to the axonal tips, where they are translated by Sema3A in mammals [Wu et al. 2005]. Interestingly, knockdown of C. elegans RhoA, rho-1, was reported to produce a mildly penetrant ray 1 phenotype similarly to plx-1/smp-1 smp-2 mutants [Dalpe et al. 2004].

To summarize, we provided lines of in vivo evidence that the SMPs signal stimulates mRNA translation. The signal reduces P-eIF2α and, as our data infer, may concertedly activate eIF4F complex formation, which leads to global translation combined with selective translation as illustrated with unc-60A in a manner dependent on its 3′UTR. Together with accumulating evidence in the nervous system [Wu et al. 2005; Leung et al. 2006; Piper et al. 2006; Schrat et al. 2006; Lin and Holt 2007], our results imply that translation of mRNA species, especially those relevant to cytoskeleton, is a fundamental mechanism for regulating cell morphology.

Materials and methods

Strains

Standard techniques for C. elegans culture and genetics were used as described by Brenner [1974]. For analysis of the male tails, strains carried the him-5 mutation. For Western blot and Northern blot analyses, N2 was used as a wild-type control, unless otherwise noted. The following alleles were used: [LGI] smp-1(ev715), smp-2(ev709); [LLGI] rfp-3(pk1426), Y181G3A.3 (mb1267, ok871, ok886), ncs13[ajm-1::gfp]; [LLGIV] gcn-1(mnc40), t(69)[LGI] plx-1(nmc37, ev724), jcs1[ajm-1::gfp:: unc-29]; rol-6(sa1006); [LLGV] him-5(e1490); [LLGX] pek-1(ok275, tme629), Bristol N2, Hawaiian CB4856. The linkage groups of ncs17[::gfp:: ncs19[::gfp:: plx-1[::gfp:: rol-6(sa1006)], ncs32[::gfp:: mRFP:: unc-54:: 3′UTR, lin-32p:: ECFP:: unc-60A 3′UTR, rol-6(sa1006)]; and ncs35[::gfp:: ECFP:: unc-54 3′UTR, lin-32p:: mRFP:: unc-60A 3′UTR, rol-6(sa1006)] have not been determined.
Isolation of suppressor mutants

Young adult plx-1(nc37), him-5(e1490) mutants were mutagenized with ethylmethane sulfonate (EMS). Males from F3 progeny representing up to 1000 haploid genomes were screened under Nomarski optics (Zeiss Axioplan) to examine whether the ray 1 anterior displacement characteristic of plx-1; him-5 was suppressed. One of the isolated suppressor mutants, plx-1; him-5; nc40, was out-crossed 10 times to plx-1; him-5. nc40 single mutants were fertile and appeared healthy, but the brood size was reduced to half [N2: 358 ± 23, nc40: 178 ± 28 (n = 3 for each)].

Genetic mapping of nc40

Two-factor and three-factor crosses mapped nc40 at 1.4 map units right to dpy-1 on linkage group III. Further mapping was performed by using single nucleotide polymorphisms (SNPs) between N2 and CB4856 strains. F2 progeny from plx-1; him-5; nc40 (N2 background) × plx-1; him-5 (CB4856 background) crosses were isolated, and populations were generated from each isolate. Male tails from each population were tested to determine the genotype of the suppressor gene. Genomic DNA was prepared from each population, which was either wild type or homozygous nc40, and SNPs were scored by PCR amplification followed by restriction enzyme digestion or sequencing. Using genomic DNA from 72 populations, nc40 was mapped between nucleotides 84,618 and 108,185 on Y48G9A.

RNAi

Genomic DNA fragments of gca-1 [Y48G9A: nucleotides 105,712–106,114], elf2α [Y37E3: 14,315–14,862], elf2β [jfh-1 (C54G4: 34,320–K04C2: 287), elf4G [jfg-1 (M110: 15,908–16,949)], elf2β [eit-1 (ZK328: 13,513–15,136), eit-2 [F2H5: 10,535–11,429], spa-2 [F56F3: 21,390–22,631], unc-60A (C38C3: 19–1074), 3’UTR of unc-60A (C38C3: 976–1682), and a cDNA fragment of plx-1 (nucleotides 603–1932) were subcloned into the pPD129.36 vector, and the resulting constructs were transcribed into HT115 bacteria to allow for the synthesis of dsRNA from the full-length plx-1 open reading frame. Young adult hermaphrodites were fed with transformed bacteria, and the F1 progeny were analyzed for their phenotypes. Animals carrying the rrl-3[pkr1426] mutation, which gives hypersensitivity to RNAi (Simmer et al. 2002) but does not affect the morphology of male tails alone. Animals fed with bacteria harboring the empty pPD129.36 vector were used as controls.

Generation of anti-elf2α antibody

A rabbit polyclonal antibody was raised against a synthetic peptide corresponding to 16 amino acid residues near the C terminus of C. elegans elf2α (BioGate). The peptide consisted of NH2-VDAEEASRDNRKKAGD-COOH and was coupled to keyhole limpet hemocyanin. The antibody specifically labels /H9251 ifg-1/H9251 or anti-elf2α, anti-phospho-elf2α (Cell Signaling Technology), anti-α-tubulin (Woods et al. 1989), or anti-UNC-60A (Ono and Benian 1998) primary antibodies. The immunoblot signals were then visualized by incubation with anti-mouse or anti-rabbit IgG antibodies conjugated with horseradish peroxidase (HRP) (Cell Signaling Technology) followed by detection with an Immobilon Western chemiluminescent HRP substrate (Millipore). Images were captured and quantified with Luminescence Image Analyzer LAS-1000 (FujiFilm). One-way ANOVA was used to evaluate differences in the signal intensities.

Confocal laser microscopy

Confocal images were captured and quantified with an Olympus Fluoview300 to analyze the expression profiles of EGFP and mRFP in the male tails of ncls32 or ncls33 at the L3 stage, when each ray precursor unit, Rn, is composed of one Rn.p cell and two Rn.a descendants, Rn.aa and Rn.ap cells. Cell boundaries were delineated with ncls13[ajm-1::gfp]. In each observation, the same laser intensity and exposure conditions were used. As a reference, the fluorescent intensity of an AVM cell body was measured. AVM, which does not express plx-1, gave an indistinguishable value in each observation (data not shown).

Acknowledgments

We thank the staff of Fujisawa and Oda Laboratories, Hiromi Hrata, Kunihito Matsumoto, Naoki Hisamoto, and Jonathan Ewbank for discussion and comments; Mic Chikuma for nc40 mapping; Motoshi Suzuki for constructing ncls17 and ncls19; Yuji Kohara for cDNA clones; Andrew Fire for pPD49.26 and other vectors; Shoichiro Ono for anti-UNC-60A antibody; Keith Gull for anti-α-tubulin antibody; Roger Tsien and Hiroshi Kagoshima for mRFP cDNA; Leslee S. Rose for information on spa-2; and Douglas S. Portman for information on lin-32p. Some strains were provided by the Caenorhabditis Genetic Center, which is funded by the National Institutes for Health National Center for Research Resources, and National Bioresource Project funded by the Ministry of Education, Culture, Sports, Science and Technology of Japan. This work was supported by grants from the Ministry of Education, Culture, Sports, Science and Technology of Japan [to H.F., T.I., Y.O., and S.T.]; a grant from CREST (Core Research for Evolutional Science and Technology of Japan) [to H.F.]; and a grant from The Sumitomo Foundation (to S.T.).

References

Semaphorin controls epidermal morphogenesis by stimulating mRNA translation via eIF2α in *Caenorhabditis elegans*

Akira Nukazuka, Hajime Fujisawa, Toshifumi Inada, et al.

Genes Dev. 2008 22: 1025-1036
Access the most recent version at doi:10.1101/gad.1644008

Supplemental Material
http://genesdev.cshlp.org/content/suppl/2008/03/27/22.8.1025.DC1.html

References
This article cites 48 articles, 20 of which can be accessed free at:
http://genesdev.cshlp.org/content/22/8/1025.full.html#ref-list-1

Articles cited in:
http://genesdev.cshlp.org/content/22/8/1025.full.html#related-urls

Related Content
Semaphorin signaling in morphogenesis: found in translation
Andrew D. Chisholm
Genes Dev. April 15, 2008 22: 955-959
Thinking Globally, Acting Locally
Annalisa M. VanHook
Sci. Signal. April 22, 2008 1: ec146

Email Alerting Service
Receive free email alerts when new articles cite this article - sign up in the box at the top right corner of the article or click here.