Contents

Perspectives

693 BMPs oppose Math1 in cerebellar development and in medulloblastoma
Matthew R. Grimmer and William A. Weiss

700 Micromanaging regeneration
Elly M. Tanaka and Gilbert Weidinger

706 A house with many rooms: how the heart got its chambers with foxn4
Ethan David Cohen and Edward E. Morrisey

Reviews

711 Interpretation of cytokine signaling through the transcription factors STAT5A and STAT5B
Lothar Hennighausen and Gertraud W. Robinson

Research communications

722 Post-transcriptional down-regulation of Atoh1/Math1 by bone morphogenic proteins suppresses medulloblastoma development
Haotian Zhao, Olivier Ayrault, Frederique Zindy, Jee-Hae Kim, and Martine F. Roussel

728 Fgf-dependent depletion of microRNA-133 promotes appendage regeneration in zebrafish
Viravuth P. Yin, J. Michael Thomson, Ryan Thummel, David R. Hyde, Scott M. Hammond, and Kenneth D. Poss

734 Foxn4 directly regulates tbx2b expression and atrioventricular canal formation
Neil C. Chi, Robin M. Shaw, Sarah De Val, Guson Kang, Lily Y. Jan, Brian L. Black, and Didier Y.R. Stainier

740 Cooperative regulation in development by SMRT and FOXP1
Kristen Jepsen, Anatoli S. Gleiberman, Can Shi, Daniel I. Simon, and Michael G. Rosenfeld

Research papers

746 Tcf3 is an integral component of the core regulatory circuitry of embryonic stem cells

756 A natural antisense transcript regulates Zeb2/Sip1 gene expression during Snail1-induced epithelial–mesenchymal transition
Manuel Beltran, Isabel Puig, Cristina Peña, José Miguel García, Ana Belén Álvarez, Raúl Peña, Félix Bonilla, and Antonio García de Herreros

770 Cooperation between the Hic1 and Ptc1 tumor suppressors in medulloblastoma

(continued)
Hed1 regulates Rad51-mediated recombination via a novel mechanism
Valeria Busygina, Michael G. Sehorn, Idina Y. Shi, Hideo Tsubouchi, G. Shirleen Roeder, and Patrick Sung

Coupling meiotic chromosome axis integrity to recombination
Aurora Storlazzi, Sophie Tesse, Gwenael Ruprich-Robert, Silvana Gargano, Stefanie Pöggeler, Nancy Kleckner, and Denise Zickler

Auxin influx carriers stabilize phyllotactic patterning
Katherine Bainbridge, Soazig Guyomarc’h, Emmanuelle Bayer, Ranjan Swarup, Malcolm Bennett, Therese Mandel, and Cris Kuhlemeier

Open Access paper

Cover
Fgf-dependent depletion of microRNA-133 promotes zebrafish fin regeneration. Shown here is a stereomicrograph of a zebrafish fin, depicting the segmented bony rays within a milieu of connective tissue, nerves, blood vessels, epidermis, and pigment cells, which comprise the organ. When fins are amputated, the lost structures are faithfully restored within 2 wk in events dependent on formation and maintenance of a proliferative blastema. The microRNA miR-133 is depleted during regeneration, regulation that requires Fibroblast growth factor signaling, and facilitates proliferation of blastemal cells. [For details, see Yin et al., p. 728.]