Contents

Perspectives
In a tight spot: ARE-mRNAs at processing bodies 627
Georg Stoecklin and Paul Anderson

Research communications
Re-evaluating AKT regulation: role of TOR complex 2 in tissue growth 632
Ville Hietakangas and Stephen M. Cohen

Myosin phosphatase dephosphorylates HDAC7, controls its nucleocytoplasmic shuttling, and inhibits apoptosis in thymocytes 638
Maribel Parra, Tokameh Mahmoudi, and Eric Verdin

Maternal microRNAs are essential for mouse zygotic development 644OA
Fuchou Tang, Masahiro Kaneda, Dónal O’Carroll, Petra Hajkova, Sheila C. Barton, Y. Andrew Sun, Caroline Lee, Alexander Tarakhovsky, Kaiqin Lao, and M. Azim Surani

A novel checkpoint mechanism regulating the G1/S transition 649
Tonje Tvegård, Héla Soltani, Henriette C. Skjolberg, Marit Krohn, Esben A. Nilssen, Stephen E. Kearsey, Beáta Grallert, and Erik Boye

Research papers
Mad3p, a pseudosubstrate inhibitor of APCCdc20 in the spindle assembly checkpoint 655
Janet L. Burton and Mark J. Solomon

Replication fork stalling and cell cycle arrest in UV-irradiated Escherichia coli 668
Christian J. Rudolph, Amy L. Upton, and Robert G. Lloyd

Critical roles for Dicer in the female germline 682
Elizabeth P. Murchison, Paula Stein, Zhenyu Xuan, Hua Pan, Michael Q. Zhang, Richard M. Schultz, and Gregory J. Hannon

Sprouty-2 regulates oncogenic K-ras in lung development and tumorigenesis 694
Alice T. Shaw, Alexander Meissner, James A. Dowdle, Denise Crowley, Margaret Magendanz, Chensi Ouyang, Tiziana Parisi, Jayaraj Rajagopal, Leah J. Blank, Roderick T. Bronson, James R. Stone, David A. Tuveson, Rudolf Jaenisch, and Tyler Jacks

Ultraconserved elements are associated with homeostatic control of splicing regulators by alternative splicing and nonsense-mediated decay 708

(continued)
TTP and BRF proteins nucleate processing body formation to silence mRNAs with AU-rich elements
Tobias M. Franks and Jens Lykke-Andersen

Cover During meiotic maturation, cohorts of oocytes synchronously re-enter the cell cycle and complete meiosis. This is a process that occurs in the absence of transcription and depends on the regulated translation of stored maternal transcripts. Shown here is an immunofluorescence analysis of 60 Dicer-deficient mouse oocytes using an antibody directed against the spindle component, β-tubulin (red). DNA was counterstained with Sytox green. In the absence of Dicer, mouse oocytes develop abnormal spindles and often fail to complete the first meiotic division, revealing a novel role for small RNAs during meiosis. [For details, see Murchison et al., p. 682, and related paper by Tang et al., p. 644.]