The Eppendorf Microcentrifuge.

With 18-tube capacity, variable speed, quiet operation, and quick-release rotor.

Better all-around performance.

Higher capacity...plus.
The 18-tube Model 5415 Micro Centrifuge gives you important operating advantages—
with unique Eppendorf quality.

Versatile in use.
Model 5415 has a variable-speed motor that reaches a maximum of 14,000 rpm with an RCF of 16,000 x g; a 30-minute timer; and a momentary button for short spins. It accepts 1.5 mL, 500 µL, 400 µL, and 250 µL Eppendorf microcentrifuge tubes and blood collection microtubes, such as B-D Microtainer® Tubes.*

Superior rotor design.
The enclosed rotor design reduces air turbulence and noise. Tubes are angled precisely at 45° to maximize pellet formation.

Enclosed rotor design reduces air turbulence and noise. Tubes are angled precisely at 45° to maximize pellet formation.

Safe and rugged.
The Eppendorf 5415 Micro Centrifuge is UL listed for safety. It's so rugged that an accidentally unbalanced load won't cause excessive vibration or motor damage.
Call 800-645-3050; in New York, 516-334-7500, for more information. Or write Brinkmann Instruments, Inc., Cantiague Road, Westbury NY 11590. (In Canada: 416-675-7911; 50 Galaxy Blvd., Rexdale, Ont. M9W 4Y5)

Specifications

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum speed</td>
<td>14,000 rpm</td>
</tr>
<tr>
<td>Maximum RCF</td>
<td>16,000 x g</td>
</tr>
<tr>
<td>Test-tube capacity</td>
<td>18</td>
</tr>
<tr>
<td>Time required for maximum speed</td>
<td>10 sec</td>
</tr>
<tr>
<td>Time required to stop</td>
<td>12 sec</td>
</tr>
<tr>
<td>Dimensions (L x W x H)</td>
<td>28 x 21 x 28.5 cm</td>
</tr>
</tbody>
</table>

Microtainer Tubes is a registered trademark of Becton Dickinson and Company.

Reader Service No. 77
Contents

Commentaries

Genomic imprinting
Marilyn Monk 921

Viral vectors: a meeting review
Edward Mocarski 926

Research papers

Paternal DNA strands segregate to both trophectoderm and inner cell mass of the developing mouse embryo
Kenichi Ito, James D. McGhee, and Gilbert A. Schultz 929

Phase variation in Salmonella: analysis of Hin recombinase and hix recombination site interaction in vivo
Kelly T. Hughes, Philip Youderian, and Melvin I. Simon 937

Configuration of the α-fetoprotein regulatory domain during development
Roseline Godbout and Shirley M. Tilghman 949

A liver-specific factor essential for albumin transcription differs between differentiated and dedifferentiated rat hepatoma cells
Silvia Cereghini, Marta Blumenfeld, and Moshe Yaniv 957

EivF, a factor required for transcription of the adenovirus EIV promoter binds to an element involved in EIA-dependent activation and cAMP induction
Patricia Cortes, Leonard Buckbinder, M. Aleida Leza, Nancy Rak, Patrick Hearing, Alejandro Merino, and Danny Reinberg 975

Identification and purification of EBPl: a HeLa cell protein that binds to a region overlapping the ‘core’ of the SV40 enhancer
Lilian Clark, Roy M. Pollock, and Ronald T. Hay 991

The half-life of immunoglobulin mRNA increases during B-cell differentiation: a possible role for targeting to membrane-bound polysomes
John O. Mason, Gareth T. Williams, and Michael S. Neuberger 1003

An excised SV40 intron accumulates and is stable in Xenopus laevis oocytes
Tamar Michaeli, Zhen-Qiang Pan, and Carol Prives 1012

Expression, modification, and localization of the fushi tarazu protein in Drosophila embryos
Henry M. Krause, Roman Klemenz, and Walter J. Gehring 1021

Region-specific alleles of the Drosophila segmentation gene hairy
Ken Howard, Phil Ingham, and Chris Rushlow 1037

Gene encoding a morphogenic protein required in the assembly of the outer coat of the Bacillus subtilis endospore
Liangbiao Zheng, William P. Donovan, Philip C. Fitz-James, and Richard Losick 1047

Cover Segregation of paternal DNA during early mouse development. Two-cell mouse embryo in which DNA is stained with DAPI. [For details, see Ito et al., this issue.]