Contents

Research papers

**MyoD is required for myogenic stem cell function in adult skeletal muscle**
Lynn A. Megeney, Boris Kablar, Kerryn Garrett, Judy E. Anderson, and Michael A. Rudnicki

**The c-ros tyrosine kinase receptor controls regionalization and differentiation of epithelial cells in the epididymis**
Eva Sonnenberg-Riethmacher, Barbara Walter, Dieter Riethmacher, Stephanie Gödecke, and Carmen Birchmeier

**Patterning of cells in the Drosophila eye by Lozenge, which shares homologous domains with AML1**
Andrea Daga, Chris A. Karlovich, Karin Dumstrei, and Utpal Banerjee

**RBF, a novel RB-related gene that regulates E2F activity and interacts with cyclin E in Drosophila**
Wei Du, Marc Vidal, Jing-Er Xie, and Nicholas Dyson

**The XPB and XPD DNA helicases are components of the p53-mediated apoptosis pathway**
Xin Wei Wang, Wim Vermeulen, Jill D. Coursen, Michael Gibson, Shawn E. Lupold, Kathleen Forrester, Guowei Xu, Lynne Elmore, Heidi Yeh, Jan H.J. Hoeijmakers, and Curtis C. Harris

**A protein that shuttles between the nucleus and the cytoplasm is an important mediator of RNA export**
Margaret S. Lee, Michael Henry, and Pamela A. Silver

**Repression domain of the yeast global repressor Tup1 interacts directly with histones H3 and H4**
Diane G. Edmondson, M. Mitchell Smith, and Sharon Y. Roth

**Promoter specificity mediates the independent regulation of neighboring genes**
Christopher Merli, David E. Bergstrom, Jennifer A. Cygan, and Ronald K. Blackman

(continued)
<table>
<thead>
<tr>
<th>title</th>
<th>page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intracellular receptors use a common mechanism to interpret signaling information at response elements</td>
<td>1271</td>
</tr>
<tr>
<td>Ptx1, a bicoid-related homeo box transcription factor involved in transcription of the pro-opiomelanocortin gene</td>
<td>1284</td>
</tr>
<tr>
<td>Thomas Lamonerie, Jacques J. Tremblay, Christian Lanctôt, Marc Therrien, Yves Gauthier, and Jacques Drouin</td>
<td></td>
</tr>
<tr>
<td>Erratum</td>
<td>1296</td>
</tr>
</tbody>
</table>

Cover  Muscle regeneration requires MyoD. (Background) MyoD (−/−) muscle 2 weeks following injury displays markedly reduced healing with very small numbers of small-caliber myotubes and unusually high numbers of mononuclear cells. (Insets) The mdx mouse (top) lacks the dystrophin gene and displays a relatively normal gait due to the high regenerative ability of murine skeletal muscle. By contrast, the mdx mouse lacking MyoD (bottom) displays an abnormal waddling gait with weight-bearing on the hocks because of the severe dorsal–ventral curvature of the spine and increased myopathy. (For details, see Megeney et al., p. 1173.)