The Editors would like to thank the Editorial Board and the following scientists who were kind enough to review papers and provide advice during this first year of Gene & Development's existence. Your help has been invaluable and is greatly appreciated.

Adelstein, Robert
Agabian, Nina
Alberts, Bruce
Alt, Fred
Alwine, James
Anderson, Kathryn
Anderson, Phil
Andrews, Brenda
Aria, John
Artavanis-Tsakonas, Spyros
Ashburner, Mike
Ausubel, Frederick
Avner, Philip
Babiss, L.E.
Bachenheimer, Steven
Baltimore, David
Bate, Michael
Baulcombe, David
Bautch, Victoria
Beckwith, Jon
Bender, Welcome
Beringer, John
Berman, Michael
Bienz, Marianne
Bingham, Paul
Bird, Adrian
Bishop, John
Bishop, Mike
Bissell, Montgomery
Blackburn, Liz
Blau, Helen
Blobel, Gunter
Boistard, Pierre
Bothwell, Al
Borstein, David
Bond, Jeff
Bowes, Mary
Bradshaw, Ralph
Brandhorst, Bruce
Brawerman, George
Brennan, Sean
Bissell, Montgomery
Broach, Jim
Brugge, Joan
Buckingham, Margaret
Calame, Kathryn
Calendar, Richard
Calzone, Frank
Cameron, Andrew
Campos-Ortega, J.A.
Cantor, Harvey
Chalfie, Martin
Champe, Sewall
Chapman, Verne
Chater, Keith
Childs, Geoff
Clark, John
Clayton, Ruth
Cleveland, Don
Cline, Thomas
Coffin, John
Colman, Alan
Cone, Roger
Cooper, Colin
Costantini, Frank
Cozarelli, Nick
Craig, Elizabeth
Craig, Ian
Curran, Tom
Darnell, James E.
Davidson, Eric
Davidson, Irwin
Dixon, Gordon
Dixon, Ray
Donachie, William
Dreyfuss, Gideon
Dworkin, Martin
Dynan, William
Efrat Shimon
Eisenmann, Robert
Elgin, Sarah
Engel, James
Epstein, Henry
Evans, Martin
Fan, Hung
Felsenfeld, Gary
Feramisco, James
Fey, Georg
Field, Loren
Finnegan, David
Flavell, Richard
Freeling, Mike
Freudewald, David
Gall, Joseph
Garber, Richard
Garcia-Blanco, Mariano S.
Gasser, Charles S.
Getter, Malcolm
Gehring, Walter
Gelbart, William
Georgopoulos, Costa
Gesteland, Ray
Gerke, Volker
Ghysen, Alain
Gilboa, Eli
Gilman, Mike
Glover, David
Gluzman, Yasha
Goldberg, Robert
Goldstein, Lawrence
Goodman, Corey
Gorovsky, Martin
Gottesman, Max
Graves, Barbara
Green, Pamela J.
Grindley, Nigel
Gross, Carol
Grunstein, Mike
Gruss, Peter
Guarente, Leonard
Gould, Gurdon, John B.
Hall, Alan
Hall, John
Hamer, Dean
Hanahan, Doug
Harland, Richard
Harlow, Ed
Harper, Peter
Hassell, John
Hastie, Nick
Hearing, Janet
Hearing, Pat
Helfman, David
Hernandez, Nouria
Herr, Winship
Hershey, John
Herskowitz, Ira
Hille, Merill
Hills, Bob
Hinnebusch, Alan
Hirsh, Jay
Hogan, Brigid
Hogness, David
Holliday, Robin
Housman, David
Horsch, Rob
Hovitz, Bob
Howley, Peter
Hughes, Steve
Hütter, R.
Hynes, Richard
Ingham, Phil
Inouye, Masayori
Ish-Horowicz, David
Ivarie, Bob
Jäckle, Herbert
Jackson, Ian
Jacobsen, Allan
Jaenisch, Rudi
Jahn, Carolyn
Jelinek, Warren
Jimenez, A.
Johnston, A.W.B.
Kahmann, Regina
Kaufman, Thomas
Kazazian, Haig
Kedinger, Claude
Keller, Walter
Kelly, Regis
Kimble, Judith
Kingston, Robert
Kirschner, Marc
Klar, Aman
Kleckner, Nancy
Klein, William
Klobucher, Larry
Knipe, David
Knowland, John S.
Kornberg, Tom
Kostrickin, Rich
Krainer, Adrian
Kraus, Allan
Kruhlnauf, Robb
Kucherlapati, R.
Kuff, Edward
Kuhlemeyer, Chris
Lacy, Liz
Lamb, Christopher
Lawrence, Peter
Lazzarini, Robert
Le Sourouge, Wallace
Lee, Amy
Lee, Susanna
Lehrhans, Hans
Levine, Michael
Lewis, E.B.
Lewis, Jim
Lewis, John
Ley, Timothy
Lindahl, Tomas
Lingrel, Jerry
Lipshitz, Howard
Livingston, Margaret
Long, Sharon
Lovell-Badge, Robin H.
Luc, David
Lusky, Monika
Lutkenhaus, Joseph
Lyon, Mary
Macdonald, Paul
Mahowald, Anthony
Malmberg, Russell
Maniatis, Thomas
Manley, James

*From November 1, 1986 to November 15, 1987.
Marcu, Kenneth
Marks, Paul
Marshall, Dan
Martín, Gail
Martinez-Arias, Alfonso
Marzluff, William
Mattaj, Iain
McDonald, Paul
McGinnis, Bill
McKay, Jim
McLaren, Anne
Mellor, David
Melton, David
Meyer, Barbara
Miller, Kathryn
Mlodzik, Marek
Monk, Marilyn
Moore, Claire
Morgan, William T.
Morris, Gil
Murray, Kenneth
Nathans, Dan
Needleman, Philip
Neidhardt, Fred
Nemer, Martin
Neuberger, Michael
Nevins, Joe
O'Hare, Kevin
Oakley, Berl
Ohki, Misao
Oliver, Don
Omki, Misao
Osley, Mary Ann
Oswell, Bob
Oxender, Dale
Parkhurst, S.
Patient, Roger
Peacock, W.J.
Pederson, Thoru
Peebles, Craig
Pelham, Hugh
Percival-Smith, Anthony
Perry, Robert
Petersen, Martha
Pettersson, Ulf
Piatagorsky, Joram
Posakony, J.W.
Prescott, David
Prives, Carol
Proudfoot, N.J.
Raff, Elizabeth
Raff, Rudolf
Reeder, Ronald
Rice, Andy
Rickinson, Alan
Rigby, Peter
Roberts, Bruce
Roberts, David
Roberts, Jeff
Robertson, Hugh
Roeder, Robert
Rosbash, Mike
Rosenberg, Naomi
Rothenberg, Ellen
Ruddle, Frank H.
Ruderman, Joan
Ruley, Earl
Ruscetti, Sandra
Saedler, Heinz
Salzman, Norman
Sassone-Corsi, Paolo
Schell, Jeff
Schibler, Uli
Schildkraut, Carl
Schimke, Robert
Schnaitman, Carl
Scolnick, Ed
Sefton, Bart
Seidman, Jonathan
Sharp, Phil
Shap, Colin
Shaw, Gray
Shearn, Alan
Shenk, Thomas
Shuttleworth, John
Siekerka, John
Silhavy, Tom
Simons, Bob
Siniscalco, Marcello
Smith, Alan
So, Maggie
Spradling, Allan
Sommerville, John
Spratt, B.G.
Steinmetz, Michael
Steitz, Joan
Stillman, Bruce
Strickland, Sidney
Struhl, Gary
Struhl, Kevin
Sumners, Jesse
Sundaresan, Venkatesan
Szymbalski, W.
Tata, J.R.
Tatchell, Kelly
Tegtmeyer, Peter
Temin, Howard
Tobin, Elaine
Tsui, Lap-Chee
Ullrich, Axel
van Venrooij, Walther
Van Beveren, Charles
Vande Woude, George
Verma, Inder
Warn, Richard
Warner, Jonathan
Waterson, Robert
Weatherall, D.J.
Weber, Klaus
Weinberg, Robert A.
Weiss, Mary C
Welch, Bill
Westegaard, O.
Westphal, Heiner
White, Kalpana
White, R.A.H.
White, Ray
Wickner, Richard
Wickens, Marvin
Williams, David
Williams, Jeffrey
Willison, Keith
Wilt, Frederick
Woodland, Hugh
Yaffe, David
Yager, Lawrence
Yamamoto, Keith
Young, Michael
Younghusband, H.B.
Yu, John
Ziff, Edward
Zipursky, Lawrence
Zuckerman, A.J.
Advertisers, Volume 1

Academic Advertising
1250 Sixth Avenue
San Diego, CA 92101
619-699-6412

Alan R. Liss, Inc.
41 East 11 Street
New York, NY 10003
212-475-7700

American Scientific Products
Division of American Hospital Supply Corp.
1430 Waukegan Road
McGaw Park, IL 60085
312-689-8410

Amersham Corporation
2636 South Clearbrook Drive
Arlington Heights, IL 60005
312-364-7100

Bethesda Research Laboratories
Life Technologies, Inc.
8717 Grovemont Circle
Gaithersburg, MD 20877
800-638-8992

Brinkmann Instruments, Inc.
Cantiague Road
Westbury, NY 11590
516-334-7500

Drummond Scientific Company
500 Parkway
Broomall, PA 19008
215-353-0200

Elsevier Publications Cambridge
68 Hills Road
Cambridge CB2 1LA
United Kingdom
44223-315961

Fisher Scientific
711 Forbes Avenue
Pittsburgh, PA 15219
412-562-8543

Fotodyne Inc.
16700 W. Victor Road
New Berlin, WI 53151-0183
414-786-9530

Genetics Institute
87 Cambridge Park Drive
Cambridge, MA 02140
617-876-1170

ICN Biomedicals
3300 Hyland Avenue
Costa Mesa, CA 92626
800-854-0530

IRL Press Ltd
P.O. Box 1
Eynsham, Oxford OX8 1JJ
United Kingdom
44864 882283

Marine Biological Laboratory
Woods Hole, MA 02543
617-548-3705

New England BioLabs
32 Tozer Road
Beverly, MA 01915
617-927-5054

Nortech Laboratories
4 Midland Avenue
Hicksville, NY 11801
516-936-2040

Oncogene Science
350 Community Drive
Manhasset, NY 11030
516-365-9300

Pall Corporation
Pall BioSupport
77 Crescent Beach Road
Glen Cove, NY 11542
516-759-1900

Promega
2800 S. Fish Hatchery Road
Madison, WI 53711
608-274-4330

Research Genetics
2130 Memorial Parkway South
West Huntsville, AL 35801
205-533-4363

Research Products International Corp.
410 N. Business Center Drive
Mount Prospect, IL 60056
1-800-323-9814

Sabatt Instruments, Inc.
110-103 Bi County Boulevard
Farmingdale, NY 11735
516-249-4600

Schleicher and Schuell
10 Optical Avenue
Keene, NH 03431
603-352-3810

U.S. Biochemical Corp.
2611 Miles Road
Cleveland, OH 44128
800-321-9322

UCLA
103 Molecular Biology Institute
University of California, Los Angeles
Los Angeles, CA 90024
213-206-6292

VCH Publishing Inc.
220 East 23 Street
Suite 909
New York, NY 10010
212-683-8333
Subject Index, Volume 1

A

Achaete-scute gene complex, *Drosophila* larvae [Dambly-Chaudière and Chyssen], 297–306

Achaete-scute locus (AS-C) [Drosophila melanogaster], deletion analysis of [Ruiz-Gomez and Modolo], 1238–1246

5C actin gene [Drosophila melanogaster], alternative transcriptional initiation sites [Vigor- eaux and Tobin], 1161–1171

Actin–globin chimeric gene, expression in mice [Einat et al.], 1075–1084

Adenovirus 2 (Ad2), MLTF activates

Adenovirus Elb region, role in cell

Agrobacterium tumefaciens, Adh-1.

Alcohol dehydrogenase-1 enzyme, in-

Alphal-antitrypsin (al-AT)(mouse), ex-

Antennapedia (Antp)

ANF.

ANT-C.

Antennapedial complex (ANT-C) genes

Antirepressor gene {ant}, (P22} {Liao et al.}, 197–203

Antisense RNA. See also Small anti- sense regulatory RNA

inhibits gene expression [Wu et al.], 204–212

and OOP RNA inhibition of lambda cII expression [Krinke and Wulff], 1005–1013

Antitermination, Q-protein-mediated

AroH operator [Escherichia coli], (Kumamoto et al.), 556–564

AS-C. See Achaete-scute

ATP, spliceosome assembly in yeast (Cheng and Abelson), 1014–1027

Atrial natriuretic factor (ANF) gene, ex- pression during mouse cardiac embryogenesis [Zeller et al.], 693–698

Autoregulation, R.L. bv. vicie nodD gene [Burn et al.], 456–464

Auxin genes [Agrobacterium tumefaciens], iaaM and iaaH [Klee et al.], 96–96

Axis specification, early cleavage of sea urchin embryo [Cameron et al.], 75–85

B

B cell, development [Galli et al.], 471–481

B cell (human), differentiation [Kinashi et al.], 465–470.

B-cell differentiation, V(D) recombin-
tion activity [Lieber et al.], 751–761

Bacteriophage lambda,
cIII protein [Bahl et al.], 57–64

OOP RNA negatively regulates cII gene expression [Krinke and Wulff], 1005–1013

transcription antitermination [Yang et al.], 217–226

Bacteriophage P22

derivatives of [Bass et al.], 565–572
gene expression [Liao et al.], 197–203
gene expression [Wu et al.], 204–212

Beta-galactosidase (Myxococcus xanthus), developmental expression in lac fusions [Kroos and Kaiser], 840–854

Beta-globin gene (human), 3' enhancer

defects in lens fiber differentiation [Khillian et al.], 1327–1335

c-myc expression, transcriptional and post-transcriptional regulation [Nepveu et al.], 938–945

c-src gene product, altered in neuronal cells [Brugge et al.], 287–296

c-src neuronal mRNA, unique processing [Brugge et al.], 287–296

cAMP, regulation in *S. cerevisiae* (Nikawa et al.), 931–937

CDC25 proteins, modulation of cAMP levels in *S. cerevisiae* [Nikawa et al.], 931–937

cII gene expression (phage lambda), inhibition by OOP RNA [Krinke and Wulff], 1005–1013

cII protein (phage lambda), induction of *E. coli* heat shock response [Bahl et al.], 57–64

Caenorhabditis elegans
developmental control by lin-14 [Ambros and Horvitz], 398–414

sex-determining gene tra-1 [Hodgkin], 731–745

Carbonic anhydrase gene (CAIII)

in mice, isolation and analysis [Lloyd et al.], 594–602

Cardiac embryogenesis [mouse], ANF gene expression [Zeller et al.], 693–698

Caulobacter crescentus, expression of *flg* gene [Loewy et al.], 626–635

Cell cycle gene RCC1 [human], isolation and characterization [Ohtsubo et al.], 585–593

Cell lineage, sea urchin embryos (Ca-

meron et al.), 75–85

Binding proteins, ATF [Hurst and Jones], 1132–1146

Binding sites (Escherichia coli), tcp re-
pressor, multiple helically stacked [Kumamoto et al.], 556–564

Bithorax complex [BX-C] [Drosophila melanogaster] [Lipshitz et al.], 307–322; [Peifer et al.], 891–936 [review]
tab mutation in [Celinker and Lewis], 111–123

Blastoderm fate map [Drosophila melanogaster], maternal-effect genes [Mlozdik et al.], 603–614

Blastomere, lineage, fate of in sea urchin embryo [Cameron et al.], 75–85

Branch point mutation (yeast), [Couto et al.], 445–455

BX-C. See Bithorax complex

C

c-mos overexpression [transgenic mice], defects in lens fiber differentiation [Khillian et al.], 1327–1335

c-myc expression, transcriptional and post-transcriptional regulation [Nepveu et al.], 938–945

c-src gene product, altered in neuronal cells [Brugge et al.], 287–296

c-src neuronal mRNA, unique processing [Brugge et al.], 287–296

cAMP, regulation in *S. cerevisiae* (Nikawa et al.), 931–937

CDC25 proteins, modulation of cAMP levels in *S. cerevisiae* [Nikawa et al.], 931–937

cII gene expression (phage lambda), inhibition by OOP RNA [Krinke and Wulff], 1005–1013

cII protein (phage lambda), induction of *E. coli* heat shock response [Bahl et al.], 57–64

Caenorhabditis elegans
developmental control by lin-14 [Ambros and Horvitz], 398–414

sex-determining gene tra-1 [Hodgkin], 731–745
Subject Index

Cell type specificity, SV40 enhancer segments [Schirm et al.], 65–74
Cell–cell interactions, Myxococcus xanthus [Kroos and Kaiser], 840–854
Cell-specific gene expression, Drosophila Antp promoters [Jorgensen and Garber], 544–555
Central nervous system [chicken], neurofilaments in [Zopf et al.], 699–708
Central nervous system development (mouse), possible role of En-1 and En-2 [Joyner and Martin], 29–38
Centromere selection, in chromosome-mediated transfectants [Pritchard and Goodfellow], 172–178
Challenge phages, Salmonella P22 phage [Bass et al.], 565–572
Chicken delta-crystallin gene regulation [Hayashi et al.], 818–828
visual system development [Drosophila melanogaster] [Joyner and Martin], 709–715
Chromatin structure, telomeres in [Burglin et al.], 1138–1200
Chromosome structural genes [Oxytricha nova], 924–930
Chimeric genes
actin–globin, expression [Einat et al.], 1075–1084
introns increase expression of in maize [Callis et al.], 1183–1200
Chorion structural genes [Drosophila melanogaster], spatial and temporal controls [Parks and Spradling], 497–509
Chromatin, long-distance position effects [Jorgensen and Garber], 544–555
Chromatin assembly, proposed function for nucleoplasm [Burglin et al.], 97–107
Chromatin structure, telomeres in Oxytricha [Price and Cech], 783–793
Chromosome 1, mouse En-1 gene [Joyner and Martin], 29–38
Chromosome 5, mouse En-2 gene [Joyner and Martin], 29–38
Chromosome assignments, HBV DNA integration [Nagaya et al.], 773–782
Chromosome mapping
En-1 and En-2 mouse genes [Joyner and Martin], 29–38
RCC1 gene [Ohitsu et al.], 585–593
Chromosome-mediated gene transfer, human–mouse [Pritchard and Goodfellow], 172–178
Chromosome condensation, human cell cycle [Ohitsu et al.], 585–593
Ciliogenesis (Strongylocentrotus purpuratus)
beta-tubulin gene expression associated with [Harlow and Nemer], 1293–1304
Spec3 expression [Edon et al.], 1280–1292
cis-acting DNA elements, albumin gene expression [Pinkert et al.], 268–276
cis-acting elements [Drosophila melanogaster], regulation of Sgs-5 gene expression [Shore and Guild], 829–839
cis-control, scute gene [Drosophila melanogaster] [Ruiz-Gomez and Modellel], 1238–1246
cis-regulation, BX-C of D. melanogaster [Celmi and Lewis], 111–123
c-myc protein, positive, and negative regulation of gene expression [Kadurah-Daouk et al.], 347–357
c-myc, regulation [Hay et al.], 659–671
Complementation group p9 (mice) [Bucan et al.], 376–385
Contact inhibition, cell–cell, homeobox expression [Odenwald et al.], 482–496
Copy control elements, macronuclear chromosomes in O. fallax [Herrick et al.], 1047–1058
CoreC, synthetic oligonucleotide derived from SV40 enhancer [Schirm et al.], 65–74
Core PVUII, synthetic oligonucleotide from SV40 enhancer [Schirm et al.], 65–74
Cytoskeletal microtubules, localization of ftz mRNA, D. melanogaster [Edgar et al.], 1226–1237

D
DNA-binding factors, rat albumin promoter [Babiss et al.], 256–267
DNA-binding proteins, purification of from rat liver nuclei [Johnston et al.], 133–146
DNA elimination [Oxytricha nova], IES in micronuclear genome [Riba-Aparicio et al.], 323–336
DNA inversion, Salmonella His system [Bruit et al.], 762–772
DNA methylation differences in early development [Sanford et al.], 1039–1046
gametic differences in [Sanford et al.], 1039–1046
regulation of gene expression [Gounari et al.], 899–912
regulation of human CAIII gene [Lloyd et al.], 594–602
DNA–protein interactions. See also Enhancers, Promoters
Oxytricha telomeres [Price and Cech], 783–793
SV40 enhancer [Xiao et al.], 794–807
Salmonella His system [Bruit et al.], 762–772
U2 snRNA enhancer [Ares et al.], 808–817
DNA replication, cell- and promoter-specific activation of transcription [Grass et al.], 1065–1075
DNA synthesis, Drosophila gnu mutation [Freeman et al.], 924–930
DNA synthesis inhibitors, [Beug et al.], 277–286
Ddc gene [Drosophila melanogaster], regulatory elements required for neuronal expression [Beall and Hirsh], 510–520
Decapentaplegic gene (dpp) [Drosophila melanogaster], dorsal–ventral patterning [Irish and Gelbart], 868–879
Deletions, in-frame, mature LamB and protein export [Rasmussen and Silhavy], 185–196
Delta1-crystallin, gene regulation [chicken] [Hayashi et al.], 818–828
Developmental switches, Xenopus U1 and U4 snRNAs [Lund and Dahlberg], 39–46
Developmental timing [Caenorhabditis elegans], lin-14 activity [Ambros and Horvitz], 398–414
Differentiation reversibility, tsE26 transformed avian myelomonocytic cells [Beug et al.], 277–286
DnaK, role in E. coli heat shock response [Grossman et al.], 179–184
Dorsal group genes [Drosophila melanogaster], control of twi expression in mesoderm [Thissee et al.], 709–715
Dorsal–ventral patterning [Drosophila melanogaster] [Irish and Gelbart], 968–979
Drosophila melanogaster abnormal DNA synthesis in eggs [Freeman et al.], 924–930
achaete-scute phenotype of larvae [Dambly-Chaudière and Ghysen], 297–306
bithorax complex (BX-C) [Peifer et al.], 891–898 [review]
deletion analysis of achaete-scute [Ruiz-Gomez and Modellel], 1238–1246
differential regulation of eve, ftz expression [Frasch and Levine], 981–995
dorsal-ventral patterning [Irish and Gelbart], 868–879
dorsal–ventral pattern establishment [Thissee et al.], 709–715
embryogenesis, scr protein expression [Riley et al.], 716–730
establishment, refinement of segmental pattern [DiNardo and O’Farrell], 1212–1225
ftz expression and cytoarchitecture [Edgar et al.], 1226–1237
homology of en and inv genes to
Embryogenesis (mouse cardiac), ANF expression of nucleoplasmin [Burglin et al.], 97–107
Embryonic development (mice) [Soriano et al.], 366–375
En-1, En-2 genes (mouse), homology to Drosophila en and inv genes [Joyner and Martin], 29–38
Engrafted gene [Drosophila melanogaster] homology to invected gene [Coleman et al., 19–28
spatial control of by pair-rule genes [DiNardo and O'Farrell], 1212–1225
Enhancer, albumin, in transgenic mice [Pinkert et al.], 268–276
Enhancer, human beta-globin gene, stage-specific expression [Trudel and Costantini], 954–961
Enhancer, lymphoid-specific segment in SV40, LPV [Pettersson and Schaffner], 962–9721
Enhancer, recombinational, Salmonella Hin system [Bruist et al.], 762–772
Enhancer, SV40 and octamer binding protein [OBP100] [Sturm et al.], 1147–1160
cell-type specificity [Schirm et al.], 65–74
Enhancer, tissue specific, chicken delta1-crystallin gene [Hayashi et al.], 818–828
Enhancer, viral core element, interaction with rat liver nuclear protein [Johnson et al.], 133–146
Enhancer activation, cell-type-specific, adenovirus 19-kD T antigen [Yoshida et al.], 645–658
Enhancer core binding protein, rat liver [Johnson et al.], 133–146
Enhancer repression, relief of by adenovirus 19-kD T antigen [Yoshida et al.], 645–658
Enhancers
homologous sequences in pea plant, adenovirus 5 E1A, IFN-β [Kuhlemeyer et al.], 247–255.
SV40 [Xiao et al.], 794–807. See also Enhancer, SV40

tissue-specific [Drosophila melanogaster] [Geyer and Corces], 996–1004
transcriptional, possible functional similarity with replication origin [Grass et al.], 1065–1076
use of in mammalian oocytes with promoters [Chalifour et al.], 1096–1106
Erythroid cells (avian), lineage-specific expression of HSP70 [Banerji et al.], 19–28
Erythroid cells (human), globin gene expression [Trudel and Costantini], 954–961

E

E3 promoter [adenovirus type 5], binding factors [Hurst and Jones], 1132–1146
Ectodermal differentiation [Xenopus laevis], blastula, gastrula, neural stages [Jamrich et al.], 124–132
Elmo mutation (mouse), linkage relationship with gamma-crystallin genes [Quinlan et al.], 637–644
Embryogenesis [avian], lineage-specific expression of HSP70 [Banerji et al.], 946–953
Embryogenesis [Drosophila melanogaster] scf protein expression [Riley et al.], 716–730
twist (Thisse et al.), 709–715
Embryogenesis, early, DNA methylation during [Sanford et al.], 1039–1046
Embryogenesis [mouse], possible role of En-1 and En-2 genes [Joyner and Martin], 29–38
Embryogenesis [mouse cardiac], ANF gene expression [Zeller et al.], 693–698

Erythroid differentiation [mouse], coordinated gene regulation [Fraser and Curtis], 855–861

Escherichia coli

F

Fate maps [Drosophila melanogaster]

bcd, exu, and swa mutant embryos [Frohnhöfer and Nüsslein-Volhard], 880–890
maternal-effect genes [Mlozdik et al.], 603–614
Feedback control, cAMP levels in S. cerevisiae [Nikawa et al.], 931–937
Fis protein, binding to Salmonella Hin enhancer [Bruist et al.], 762–772
Flagellar protein, synthesis and positioning in C. crescentus [Loewy et al.], 626–635
Flavonoid nod gene inducers, R.L. bv. vicieae [Burn et al.], 456–464
Flg expression, C. crescentus flagellin gene [Loewy et al.], 626–635
Flow cytometry, analysis of neoplastic B cell-surface immunoglobulins [Kinashi et al.], 465–470
Fushi tarazu (ftz) [Drosophila melanogaster] patterning of and cytoarchitecture, [Edgar et al.], 1226–37
position-dependent expression of [Frasch and Levine], 981–995

G

Gamma-crystallin genes (mouse), expression, linkage relationship with Elmo [Quinlan et al.], 637–644
Subject Index

Gap genes *Drosophila melanogaster*, influence on segmentation genes [Frasch and Levine], 981–995

Gastrulation *Xenopus laevis*, keratin expression [Jamrich et al.], 124–132

Gene amplification *Escherichia coli*, DNA sequence requirements [Wirthsey et al.], 227–237

Gene expression. See also specific genes, organisms
cell-specific, rat albumin [Babiss et al.], 56–267

invected Drosophila gene [Coleman et al.], 19–28

permissiveness of single chromosome site for two genes [Einat et al.], 1075–1084

rat liver, transcriptional and post-transcriptional control [Panduro et al.], 1172–1182

Gene fusions *Escherichia coli*

DNA sequences at amplification junctions [Whoriskey et al.], 227–237

lamB-lacZ, protein localization [Rasmussen and Silhavy], 185–196

Gene mapping, human X chromosome [Drosophila melanogaster], 347–357

Germ-soma development [Drosophila melanogaster], 1183–1200

Haplotypes, t deletion and duplication in mice [Bucan et al.], 376–385

HBV. See Hepatitis B virus, Heat shock

regulation of in *E. coli* [Bahl et al.], 57–64

response of *Xenopus* oocytes [Horrell et al.], 433–444

Hormone, mouse cardiac, ANF expression [Zeller et al.], 693–698

Hox 3.1, identification and characterization [Odenwald et al.], 482–496

HPRT locus, human X chromosome [Pritchard and Goodfellow], 172–178

Hsp 70, *Xenopus* oocytes, translational control of synthesis [Horrell et al.], 433–444

HSP70. See also Heat shock protein HtpR [Escherichia coli], heat shock regulatory gene [Erickson et al.], 419–432

Hybrid embryos, sea urchin interspecies, restricted gene expression in [Conlon et al.], 337–346

I

IES. See Internal eliminated sequences

IL3. See Interleukin-3

Immunoglobin, class switching, two-step model [Kinashi et al.], 716–730

Immunoglobulin gene VDJ, recombination activity [Lieber et al.], 751–761

Immunoglobulin κ light-chain gene, expression in transgenic mice [Einat et al.], 1075–1084

Immunoglobulin M development control of expression [Galli et al.], 471–481

μ heavy chain of [Galli et al.], 471–481

Immunolocalization, murine Hox 3.1 protein [Odenwald et al.], 482–496

In situ hybridization analysis of cell cycle gene expression *Tetrahymena* [Yu et al.], 683–692

expression of Drosophila chori on [Parks and Spradling], 497–509

Initiation, abortive, P (<i>µ</i>) in P22 [Liao et al.], 197–203

Insertional mutagenesis (retroviral), mouse embryos [Soriano et al.], 366–375

Integration, HBV DNA [Nagaya et al.], 773–782

Interleukin-3 (IL3), expression in hematopoietic cells [Wong et al.], 1172–1182

Introns, increase gene expression in maize cells [Callis et al.], 1183–1200

H
Invected gene (Drosophila melanogaster)
 homology to mouse En-1, En-2 [Joyner and Martin], 29–38
 related to engrailed gene [Coleman et al.], 19–28

K
Keratin gene expression [Xenopus laevis], cell-type specific [Jamrich et al.], 124–132
Keratin genes, thyroid hormone induction of [Mathisen and Miller], 1107–1117

L
L-myc pseudogene, structure and activity [DePinho et al.], 1311–1326
lac operon [Mycoccocus xanthus], fusions [Kroos and Kaiser], 840–854
LamB [Escherichia coli] outer membrane protein, localization from cytoplasm [Rasmussen and Silhavy], 185–196
Lariat formation, RNA length requirements, S. cerevisiae [Rymond et al.], 238–246
Lenses fiber differentiation, transgenic mice, c-mos overexpression [Khilian et al.], 1327–1335
 Leukemia cell (tsE26) cell transformation [Beug et al.], 277–286
 Light-responsive elements (pea plant), rbcS-3A gene [Kuhlmeier et al.], 247–255
 lin-14 locus, control of C. elegans development by [Ambros and Horvitz], 398–414
 Linkage analysis, Elo mutant and gamma-crystallin genes [Quinlan et al.], 637–644
 Liver-specific gene expression, rat transcriptional and post-transcriptional control [Panduro et al.], 1172–1182
 Lymphoid cells, enhancer activity in [Pettersson and Schaffner], 962–972
 Lymphoid development, V(D)J recombination activity [Lieber et al.], 751–761
 Lymphotropic papovavirus (LPV), lymphoid-specific enhancer segment in [Pettersson and Schaffner], 962–972
 Lysogeny, control of in bacteriophage lambda [Bahl et al.], 57–64

M
Macronuclear chromosomes, copy control elements in [Herrick et al.], 1047–1058
Macronuclear development (Oxytricha nova), removal of IES [Ribas-Aparicio et al.], 323–336
Maize cells (Zea mays), introns increase gene expression in [Callis et al.], 1183–1200
Major later transcription factor (MLTF), activates Ad-ML promoter and mMTI promoter [Carthew et al.], 973–980
Mapping, chromosome, RCC1 gene [Ohtsubo et al.], 585–593
Maternal effect genes, influence on Drosophila blastoderm fate map [Mlodzik et al.], 603–614
Maternal later mutation (Drosophila melanogaster), gnu [Freeman et al.], 924–930
Maternal genes (Drosophila melanogaster), control of expression in mesoderm [Thisse et al.], 709–715
Maternal mRNA, mouse oocytes, expression of [Huarte et al.], 1201–1211
Mating type switching [Saccharomyces cerevisiae], not regulated by HO gene DNA strands [Klar], 1059–1064
MBT. See Midblastula transition
Meiosis (Drosophila melanogaster), [Freeman et al.], 924–930
 Meiotic maturation, mouse oocytes, translational activation of dormant t-PA mRNA [Huarte et al.], 1201–1211
 MEL. See Mouse erythroleukemia cells
 Mesoderm (Drosophila melanogaster), twi gene expression [Thisse et al.], 709–715
 Metallothionein, expression in sea urchin hybrid embryos [Conlon et al.], 337–346
 Metallothionein (MT) gene, methylation control [Gournari et al.], 899–912
 Metallothionein I (mouse), activation of promoter by MLTF [Carthew et al.], 973–980
 Metallothionein I promoter (mouse), inhibition by c-myc protein [Kadurah-Daouk et al.], 337–346
 Methylase, DNA. See DNA methylation
 Micronuclear DNA sequences (Oxytricha nova), nucleic acid splicing [Ribas-Aparicio et al.], 323–336
 Midblastula transition (MBT) [Xenopus laevis] [Lund et al.], 47–56
 snRNA gene transcription activation [Lund and Dahlberg], 39–46
 Missplicing, phase T4 td pre-mRNA [Chandy and Belfort], 1028–1037
 MLTF. See Major later transcription factor
 Mobility retardation assay, formation of RNA splicing complexes [Lund and Dahlberg], 479–509
 Morphogenesis (Drosophila melanogaster), molecular genetic regulation [Parks and Spradling], 504–507
 Mouse. See also Transgenic mice
 ANF gene expression during cardiac embryogenesis [Zeller et al.], 693–698
 developmental mutants [Joyner and Martin], 29–38
 DNA methylation in early development [Sandford et al.], 1039–1046
 En-1, En-2 homology to Drosophila en, inv [Joyner and Martin], 29–38
 identification and characterization of Hox 1.3 [Odenwald et al.], 482–496
 linkage relationship, Elo mutant and gamma-crystallin genes [Quinlan et al.], 637–644
 Mouse erythroleukemia cells (MEL) gene expression during induction [Fraser and Curtis], 855–861
 regulation of c-myc expression [Neveu et al.], 938–945
 Mouse oocytes
 expression of SV40 genes in [Chalifour et al.], 1097–1106
 requirement of promoters with enhancers or DNA replication [Chalifour et al.], 1097–1106
 mRNA precursors, beta-globin, splicing of [Lundam et al.], 532–543
 mRNA processing, spliceosome assembly in yeast [Cheng and Abelson], 1014–1027
 MT-I. See Metallothionein I
 Mu heavy chain of IgM, membrane versus secreted expression [Galli et al.], 471–481
 Multigene families (Tetrahymena), histone H4 expression in [Yu et al.], 683–692
 Multigene family (sea urchin), beta-tubulin [Harlow and Nemer], 147–160
 Murine sarcoma virus (MSV), enhancer core sequence interactions [Johnson et al.], 133–146
 Muscle development [human], CAIII [Lloyd et al.], 594–602
 Mutagenesis, insertional, retroviral into mouse embryos [Soriano et al.], 366–375
Subject Index

myc gene family (human), structure, activity of L-myc, L-myc pseudogene [DePinho et al.], 1311–1326
Myeloid cells, V(D)J recombination activity [Lieber et al.], 751–761
Myosin light-chain 2 gene, expression in transgenic mice [Eina et al.], 1075–1084
Myxococcus xanthus, developmental gene expression [Kroos and Kaiser], 840–854

N
Negative control elements, GALI–GAL10 region, S. cerevisiae [West et al.], 1118–1131
Neoplastic B cells (human), expression of different isotypes [Kinashi et al.], 465–470
Neural gene expression [Drosophila melanogaster], Ddc [Beall and Hirsh], 510–520
Neurofilament, chicken central nervous system [Zopf et al.], 699–708
Neurofilament protein, expression in transgenic mice [Julien et al.], 1085–1095
Neurogenesis, Drosophila larvae, [Dambly-Chaudière and Ghysen], 297–306
Neuronal cells, altered form of c-src gene product [Brugge et al.], 287–296
Neuronal marking system, neurofilament protein in transgenic mice [Julien et al.], 1085–1095
Nod gene (R. L. bv. viciae), classes of mutations [Burn et al.], 456–464
Nonsense mutation, Drosophila Ubx microexon [Weinzierl et al.], 386–397
Nuclear factor A (NF-A), [Ares et al.], 808–817
Nuclear pre-mRNA splicing (yeast), mechanism [Lin et al.], 7–18
Nuclear protein interaction with SV40 enhancer GT-1 motif [Xiao et al.], 794–807
Nucleoplasm in X. laevis [Burglin et al.], 97–107
Nucleoplasm (Xenopus laevis), cloning and analysis of developmental expression [Burglin et al.], 97–107
Nucleoprotein binding sites, E1A-inducible adenovirus E3 promoter [Hurst and Jones], 1132–1146
Nucleopolymerase binding sites, E1A-inducible sequence recognition of [Sturm et al.], 1147–1160

O
Octamer binding protein (OBP100), flexible sequence recognition of [Sturm et al.], 1147–1160
Oncogene. See also Specific names regulatory role of c-myc [Kadurah-Daouk et al.], 347–357
Oogenesis activation of dormant mRNA [Huarte et al.], 1201–1211
DNA methylation during [Sanford et al.], 1039–1046
expression of nucleoplasm in X. laevis [Burglin et al.], 97–107
spatial regulation of chorion genes [D. melanogaster] [Parks and Sprodling], 497–509
Oogenesis [Drosophila melanogaster] [Oliver et al.], 913–923
Operon fusion [Myxococcus xanthus] [Kroos and Kaiser], 840–854
ovo locus [Drosophila melanogaster], germ line maintenance [Oliver et al.], 913–923
Oxytricha fallax, macronuclear chromosome family in [Herrick et al.], 1047–1058
Oxytricha nova internal structure of telomeric complex [Price and Cech], 783–793
nucleic acid splicing, macronuclear development [Ribas-Aparacio et al.] 323–336

P
Pair-rule genes D. melanogaster [Baumgartner et al.], 1247–1267
spatial control of engrailed expression [D. melanogaster] [DeNardo and O’Farrell], 1212–1225
Paired gene [Drosophila melanogaster], spatial expression of [Baumgartner et al.], 1247–1267
Pattern formation [Drosophila melanogaster]. See also Segmental pattern, Segmentation genes dorsal–ventral [Hoffman and Goodman], 615–625
larvae sensory system [Dambly-Chaudière and Ghysen], 297–306
Phage T4, missplicing of td pre-mRNA [Chandra and Belfort], 1028–1037
Phage–host interaction, heat shock induction [Bahl et al.], 57–64
Phytohormones, manipulation in transgenic plants [Klee et al.], 86–96
Poly(A) site choice, membrane vs. μ–chain expression [Galli et al.], 471–481
Polyadenylation biochemical mechanism of [Skolnik-David et al.], 672–682
t-PA mRNA, activation by meiotic maturation in mouse oocytes [Huarte et al.], 1201–1211
Polyadenylation-specific complexes, electrophoretic separation of [Skolnik-David et al.], 672–682
Polyoma virus, enhancer core sequence interactions [Johnson et al.], 133–146
Post-transcriptional control, liver-specific gene expression, rat [Panduro et al.], 1172–1182
Post-transcriptional gene regulation, sea urchin hybrid embryos [Conlon et al.], 337–346
Post-transcriptional mechanisms, c-myc expression in MEL cells [Nepveu et al.], 938–945
Post-transcriptional regulation, E. coli mRNA and sigma32 [Erickson et al.], 419–432
Pp60src, electrophoretic mobility [Brugge et al.], 287–296
Premature chromosome condensation (PCC), human cell cycle [Ohtsubo et al.], 585–593
Processed pseudogene, human L-myc [DePinho et al.], 1311–1326
Promoter albumin, tissue specific in transgenic mice [Pinkert et al.], 268–276
albumin, rat [Babiss et al.], 256–267
E1A-inducible E3; adenovirus type 5 [Hurst and Jones], 1132–1146
GALI–GAL10 divergent (Saccharomyces cerevisiae), negative control elements, upstream activating sequence [West et al.], 1118
metallothionein I, inhibition by c-myc protein [Kadurah-Daouk et al.], 347–357
Pm of P22 [Wu et al.], 204–212
P1 of P22 [Liao et al.], 197–203
Pm of P22 [Wu et al.], 204–212
Promoters activation of by MLTF [Carthew et al.], 973–980
Antp gene in Drosophila (Jorgensen and Garber), 544–555
c-myc, regulation of transcripts from [Hay et al.], 659–671
lambda cII gene region (Krinke and Wulff), 1005–1013
use of in mammalian oocytes with enhancers, DNA replication [Chafilour et al.], 1096–1106
Protein localization, export from cytoplasm [Rasmussen and Silhavy], 185–196
Protein–protein interactions, snRNA enhancers [Ares et al.], 808–817
Proto-oncogene c-myc, regulation [Hay et al.], 659–671
Provirus, integration into mouse germ line [Soriano et al.], 366–375
Pu box, motif in SV40 and LPV enhancer segment [Pettersson and Schaffner], 962–972

Q

Q protein, phage lambda, effect on transcription [Yang et al.], 217–226

R

RAS/adenyl cyclase pathway, regulation of cAMP [Nikawa et al.], 931–937

tbc-3A gene [pea plant], light responsive [Kuhlemeier et al.], 297–255

RCC1 gene (human)
cDNA [Ohtsubo et al.], 585–593
isolation and characterization [Ohtsubo et al.], 585–593
Recombination
site-specific, Hin mediated [Salmonella] [Bruist et al.], 762–772
wild-type and t haplotype chromosomes in mice [Bucan et al.], 376–385
Recombination activity, V(D)J immunoglobulin gene [Lieber et al.], 751–761
RegA locus [Volvox carteri], RELP mapping [of Harper et al.], 573–584
Regulatory elements [Drosophila melanogaster], cell-specific Ddc gene expression [Beall and Hirsh], 510–520
Regulatory elements, negative and positive, c-myc [Hay et al.], 659–671
Repetitive sequence probes, identify RFLPs [Harper et al.], 573–584
Replication origins, possible functional similarity with transcriptional enhancer [Grass et al.], 1065–1074
Repression-defective mutants, inactivate Pm in P22 [Wu et al.], 204–212
Repressor binding, trp of E. coli [Kumamoto et al.], 556–564; [Bass et al.], 565–572
Restriction fragment length polymorphisms [RFLP], map regA locus, V. carteri [Harper et al.], 573–584
Retrodifferetiation, tSE26 transformed avian myelomonocytic cells [Beeg et al.], 277–286
Retroviral gene transfer, interleukin-3 in hematopoietic cells [Wong et al.], 358–365
Retroviruses, infection of mouse embryos [Soriano et al.], 366–375

Ribonucleoprotein particles, and RNA splicing mechanism [Lamond et al.], 532–543
Ribonucleoproteins, probable role in RNA polyadenylation [Sklonk-David et al.], 672–682
RNA localization, cytoarchitecture and ftz in D. melanogaster [Edgar et al.], 1226–1237
RNA polymerase, modified by phage lambda Q protein [Yang et al.], 217–226
RNA processing
cell-type-specific [Brugge et al.], 287–296
polyadenylation-specific complexes [Sklonk-David et al.], 672–682
RNA processing, Saccharomyces cerevisiae, [Rymond et al.], 238–246
RNA splicing, spliceosome assembly [Lamond et al.], 532–543
RNA splicing, yeast,
trans-acting suppressor [Couto et al.], 445–455
two-step process [Lin et al.], 7–18
RNA–RNA pairing
sar RNA–ant mRNA [Wu et al.], 204–212
sar RNA–ant RNA [Liao et al.], 197–203
RNA2 gene product, required for complementation of m2a spliceosome [Lin et al.], 7–18
Rna2A spliceosome, formation of [Lin et al.], 7–18
RNA16 locus, yeast, RNA splicing [Couto et al.], 445–455
RNase III [Escherichia coli], OOP RNA inhibition of cII expression [Krinke and Wulff], 1005–1013
RpoH [Escherichia coli], heat shock regulatory gene, transcription [Erickson et al.], 419–432

S

Saccharomyces cerevisiae
GAL1–GAL10 divergent promoter region [West et al.], 1118–1131
mating type switching not regulated by HO DNA strands [Klar], 1059–1064
regulation of cAMP levels [Nikawa et al.], 931–937
RNA processing [Rymond et al.], 238–246
trans-acting RNA splicing suppressor [Couto et al.], 445–455
Salivary gland secretion gene [Sgs-5], [Drosophila melanogaster], expression [Shore and Guild], 829–839
Salmonella typhimurium, Hin site-specific recombination [Bruist et al.], 762–772

Sea urchin, interspecies embryos, L. pictus × S. purpuratus [Conlon et al.], 337–346
Segmental pattern [Drosophila melanogaster]
immunolocalization of engrailed [DiNardo and O’Farrell], 1212–1225
pair-rule genes [DiNardo and O’Farrell], 1212–1225
Segmentation genes [Drosophila melanogaster]
differential regulation of eve, ftz [Frasch and Levine], 981–995
regulation of Scr protein expression [Riley et al.], 716–730
spatial expression of D. melanogaster [Mlozik et al.], 603–614
Sequence analysis, inverted gene, Drosophila [Coleman et al.], 19–28
Sex combs reduced (Scr) gene [Drosophila melanogaster], expression and regulation [Riley et al.], 716–730
Sex-determining gene [Caenorhabditis elegans], tra-1 [Hodgkin], 731–745
Sexual dimorphism [Drosophila melanogaster], [Oliver et al.], 913–923
segmental transformation in D. melanogaster [Celniker and Lewis], 111–123
Sigma32 [σ]2
E. coli heat shock response [Erickson et al.], 419–432
effect of lambda cII protein on [Bahl et al.], 57–64
rate of synthesis regulated HSP, E. coli [Grossman et al.], 179–184
Simian virus 40 (SV40) genes, expression in mouse oocytes [Chalifour et al.], 1096–1106
Site-directed mutagenesis, nodD gene, R.L. biocar. viciae [Burn et al.], 456–464
Small antisense regulatory RNA (sar), regulated ant expression in P22 [Liao et al.], 197–203; [Wu et al.], 204–212
Small nuclear RNAs (snRNAs)
differential expression, Xenopus [Lund and Dahlberg], 39–46
enhancer region of U2 gene [Ares et al.], 808–817
transcription factors, embryonic X. laevis U1 RNA genes [Lund et al.], 47–56
Small nuclear ribonucleoproteins (yeast) spliceosome assembly in [Cheng and Abelson], 1014–1027
Small nuclear ribonucleoproteins [Xenopus laevis], [Lund and Dahlberg], 39–46
snRNA. See Small nuclear RNAs
Somatic transformation [Drosophila me-
Subject Index

lanogaster, regulation of Sgs-5 gene expression (Shore and Guild), 829–839
Sp1 transcription factor, [Ares et al.], 808–817
SV40 [Xiao et al.], 794–807
Spatial regulation, chorion genes during Drosophila oogenesis [Parks and Spradling], 497–509
Spec3 (Strongylocentrotus purpuratus), expression [Eldon et al.], 1280–1292
Spec3 protein (Strongylocentrotus purpuratus), hydrophobic stretches in [Eldon et al.], 1280–1292
Spermatogenesis, DNA methylation during [Sanford et al.], 1039–1046
SPHI, synthetic oligonucleotide from SV40 enhancer [Schirm et al.], 65–74
Splice site selection, exon sequences [Chandry and Belfort], 1028–1037
Spliceosome, 40S, required for splicing
Spliceosome assembly, mutational analysis of [Lamond et al.], 532–543
eyeast [Cheng and Abelson], 1014–1027
Splicing, alternative RNA, human B cells [Kinashi et al.], 465–470
Splicing, RNA, length requirements [Rymond et al.], 238–246
Splicing-defective mutants, phage T4 [Chandry and Belfort], 1028–1037
Splicing mechanism, yeast nuclear pre-mRNA [Lin et al.], 7–18
Spliceosome {Saccharomyces cerevisiae], biogenesis of [Rymond et al.], 238–246
Spliceosome assembly, mutational analysis of [Lamond et al.], 532–543
Thyroid hormone, induction of keratin genes in Xenopus [Mathisen and Miller], 1107–1117
Tissue-specific gene [human], CAIII [Lloyd et al.], 594–602
Tissue-specific gene expression, albumin gene in transgenic mice [Pinkert et al.], 268–276
Tissue-specificity of beta-tubulin mRNAs, embryonic sea urchin [Harlow and Nemer], 147–160
chicken delta1-crystallin enhancer [Hayashi et al.], 818–828
expression of human and mouse a1AT gene [Kelsey et al.], 161–171
Tissue-type plasminogen activator (t-PA), dormant mRNA, translation activation by meiotic maturation [Huarte et al.], 1201–1211
T. See Thyminde kinase
Tra-1 sex-determining gene in C. elegans [Hodgkin], 731–745
Trans-acting suppressor {yeast], RNA splicing [Couto et al.], 445–455
Transcript accumulation (sea urchin hybrid embryos), post-transcriptional mediated restricted [Conlon et al.], 337–346
Transcription of alternative initiation sites, SC actin gene, D. melanogaster (Vigoreaux and Tobin), 1161–1171
cell- and promoter-specific, activation by DNA replication [Grass et al.], 1065–1074
T-cell-specificity of SV40 enhancer segments [Schirm et al.], 65–74
coordinated gene regulation [Fraser and Curtis], 855–866
GAL4-induced, S. cerevisiae [West et al.], 1118–1131
mechanism of and c-myc expression in MEL cells [Nepveu et al.], 938–945
MLTF activates Ad-ML and mMTI promoters [Carthew et al.], 973–980
phage lambda, Q protein effects [Yang et al.], 217–226
Transcription factors
Sp1 in SV40 [Xiao et al.], 794–807
Sp1 and NF-A [Ares et al.], 808–817
Xenopus snRNA [Lund et al.], 47–56
Transcription initiation, binding factors, E3 promoter [Hurst and Jones], 1132–1146
Transcription, phage lambda, Q protein effects [Yang et al.], 217–226
Transcription termination, membrane versus secreted w-chain expression [Galli et al.], 471–481
Transcriptional control
Drosophila yellow gene [Geyer and Corces], 996–1004
liver-specific gene expression [rat] [Panduro et al.], 1172–1182
remote, enhancer effect [Schirm et al.], 65–74
Transformation, cell, adenovirus Elb region T antigens [Yoshida et al.], 645–658
Transformation, tsE26 leukemia virus [Beug et al.], 277–286
Transgenic mice
albumin-hGH [Pinkert et al.], 268–276
c-mos overexpression and lens fiber differentiation defects [Khillan et al.], 1327–1333
expression of two genes in one chromosome site [Einat et al.], 1075–1084
expression of neurofilament protein [Julien et al.], 1085–1095
human a1-AT gene [Kelsey et al.], 161–171
human globin gene expression [Trudel and Costantini], 954–961
proviral integration at Mov 3d locus [Soriano et al.], 366–375
Transgenic plants (petunia), A. tumefaciens T-DNA auxin genes [Klee et al.], 86–96
Transgenic plants (tobacco), Kuhlemeier et al., 247–255
Transgenics {Drosophila melanogaster}, P-element transposon plasmid [Hoffman, and Goodman], 615–625
Translation, t-PA mRNA, activated by

sequence motifs [Schirm et al.], 65–74
Synaptogenesis, chick visual system [Zopf et al.], 699–708
Synthetic oligonucleotides, from SV40 enhancer [Schirm et al.], 65–74

T

T. See Thyminde kinase

T cell, development, VDJ recombinaction activity [Lieber et al.], 751–761
t complex, mouse [Bucan et al.], 376–385
Temperature-sensitive mutants, DNA methylation [Gounari et al.], 899–912
Temperature-shift experiments [Caenorhabditis elegans], periods of lin-14 activity [Ambros and Horvitz], 398–414
Tetrahymena, cell cycle, expression of histone H4 multigene family [Yu et al.], 683–692
Thermostolerance, E. coli [Van Bogelen et al.], 525–531
Thymidine kinase (TK) gene, methylation control [Gounari et al.], 899–912

yeast [Cheng and Abelson], 1014–1027

human B cells [Kinashi et al.], 465–470
length requirements [Rymond et al.], 238–246
splicing-defective mutants, phage T4 [Chandry and Belfort], 1028–1037
splicing mechanism, yeast nuclear pre-mRNA [Lin et al.], 7–18
sporulation {Myxococcus xanthus}, [Kroos and Kaiser], 840–854
Streptomycyces coelicolor A3(2), translational regulation in [Lawlor et al.], 1305–1310
Strongylocentrotus purpuratus. See also Sea urchin
beta-tubulin mRNA expression in [Harlow and Nemer], 147–160
development [Cameron et al.], 75–85
expression of Spec3 in [Eldon et al.], 1280–1292
Suppressor, trans-acting, yeast RNA splicing [Couto et al.], 445–455
SV40 enhancer core sequence interactions [Johnson et al.], 133–146

lymphoid-specific enhancer segment in [Pettersson and Schaffner], 962–972

SV40 enhancer
cell-type specificity of segments [Schirm et al.], 65–74

by DNA replication [Grass et al.], 1065–1074
cell-type specificity of SV40 enhancer segments [Schirm et al.], 65–74
coordinated gene regulation [Fraser and Curtis], 855–866
GAL4-induced, S. cerevisiae [West et al.], 1118–1131
mechanism of and c-myc expression in MEL cells [Nepveu et al.], 938–945
MLTF activates Ad-ML and mMTI promoters [Carthew et al.], 973–980
phage lambda, Q protein effects [Yang et al.], 217–226
Transcription factors
Sp1 in SV40 [Xiao et al.], 794–807
Sp1 and NF-A [Ares et al.], 808–817
Xenopus snRNA [Lund et al.], 47–56
Transcription initiation, binding factors, E3 promoter [Hurst and Jones], 1132–1146
Transcription, phage lambda, Q protein effects [Yang et al.], 217–226
Transcription termination, membrane versus secreted w-chain expression [Galli et al.], 471–481
Transcriptional control
Drosophila yellow gene [Geyer and Corces], 996–1004
liver-specific gene expression [rat] [Panduro et al.], 1172–1182
remote, enhancer effect [Schirm et al.], 65–74
Transformation, cell, adenovirus Elb region T antigens [Yoshida et al.], 645–658
Transformation, tsE26 leukemia virus [Beug et al.], 277–286
Transgenic mice
albumin-hGH [Pinkert et al.], 268–276
c-mos overexpression and lens fiber differentiation defects [Kh illan et al.], 1327–1333
expression of two genes in one chromosomal site [Einat et al.], 1075–1084
expression of neurofilament protein [Julien et al.], 1085–1095
human a1-AT gene [Kelsey et al.], 161–171
human globin gene expression [Trudel and Costantini], 954–961
proviral integration at Mov 3d locus [Soriano et al.], 366–375
Transgenic plants (petunia), A. tumefaciens T-DNA auxin genes [Klee et al.], 86–96
Transgenic plants (tobacco), Kuhlemeier et al., 247–255
Transgenics {Drosophila melanogaster}, P-element transposon plasmid [Hoffman, and Goodman], 615–625
Translation, t-PA mRNA, activated by
Subject Index

meiotic maturation, mouse oocytes [Huang et al.], 1201–1211
Translational control, hsp 70 synthesis in Xenopus oocytes [Horrell et al.], 433–444
Translational regulation, [Streptomyces coelicolor A3(2)], role of bldA [Lawlor et al.], 1305–1310
Transposons [Drosophila melanogaster], yellow locus [Geyer and Corces], 996–1004
Triiodothyronine (T3), induction of keratin genes in Xenopus [Mathisen and Miller], 1107–1118
Trypsin-like gene (Drosophila melanogaster), expression during embryogenesis [Haller et al.], 862–867

U1 RNA genes, embryonic, in X. laevis [Lund et al.], 47–56
U1 snRNA, differential accumulation in X. laevis [Lund and Dahlberg], 39–46
U1 snRNA gene, selective inactivation after MBT [Xenopus] [Lund and Dahlberg], 39–46

U2 snRNA enhancer [Ares et al.], 808–817
U2 snRNA gene, selective inactivation after MBT [Xenopus] [Lund and Dahlberg], 39–46
U4 snRNA, differential accumulation in X. laevis [Lund and Dahlberg], 39–46
Ultrasound (Ubx) domain [Drosophila melanogaster] [Lipshitz et al.], 307–322
Ultrasound (Ubx) mutation [Drosophila melanogaster], structure [Weinzierl et al.], 386–397
Upstream activating sequences, GAL1–GAL10, S. cerevisiae [West et al.], 1118–1131

V
Virus integration, HBV DNA [Nagaya et al.], 773–782
Volvox carteri, RFLP mapping of the regA locus [Harper et al.], 573–584
Xenopus laevis
induction of keratin genes by thyroid hormone [Mathisen and Miller], 1107–1118
keratin expression during gastrulation [Jamrich et al.], 124–132
microinjection of embryonic U1 RNA genes [Lund et al.], 47–56
nucleoplasmic [Burglin et al.], 97–107
three classes of U1 and U4 snRNAs [Lund and Dahlberg], 39–46

Xenopus oocytes
defolliculation [Horrell et al.], 433–444
heat shock response [Horrell et al.], 433–444

Y
Yeast. See also Saccharomyces cerevisiae
nuclear pre-mRNA splicing [Lin et al.], 7–18
spliceosome assembly [Cheng and Abelson], 1014–1027
trans-acting RNA splicing suppressor [Couto et al.], 445–455
Yellow gene [Drosophila melanogaster], transcription control of [Geyer and Corces], 996–1004

Z
Zea mays, introns increase gene expression in [Callis et al.], 1183–1200
Zerknult (zen) region, ANT-C complex [Drosophila melanogaster], molecular characterization of [Rushlow et al.], 1268–1279
Zinc animalization, and beta-tubulin expression in S. purpuratus [Harlow and Nemer], 1293–1304
Author Index, Volume 1

Abelson, John, 7, 1014
Acton, Molly A., 525
Akam, Michael, 386
Alt, Frederick W., 1311
Ambros, Victor, 398
Anger, Lynne M., 1280
Anger, Robert C., 1280
Arceci, Robert J., 693
Ares, Manuel, Jr., 808
Arvidson, Dennis N., 565
Axton, J. Myles, 386
Babiss, L.E., 256
Bahl, Hubert, 57
Baldwin, Albert S. Jr., 347
Banerjee, Mary, 1118
Banerji, Sunandita S., 946
Banks, G.R., 899
Barrett, John N., 287
Bass, Steven, 565
Baumgartner, Stefan, 1247
Baumruker, Thomas, 1147
Bautch, Victoria L., 376
Baylis, Howard A., 1305
Beall, C.J., 510
Beaudet, Lucille, 1085
Belfort, Marlene, 1028
Belin, Dominique, 1201
Bennett, A.L., 256
Bergman, Yehudit, 1075
Birrer, Thomas R., 97
Birch, J., 75
Birri, Maya, 1247
Birnkrant, Jeffrey M., 47
Bock, Kenneth W., 931
Bos, Steven, 565
Bostock, Christopher J., 47
Branch, Andrea D., 415
Brandhorst, Bruce P., 337
Breitman, Martin L., 637
Brinster, Ralph L., 268
Britten, Roy J., 75
Brekken, Richard A., 762
Bryan, Ruth A., 626
Bucan, Maja, 376
Bürglin, Thomas R., 97
Burn, J., 456
Burri, Maya, 1247
Butler, Geraldine, 1118
Bygrave, Anne E., 161
Callis, Judy, 1183
Cameron, R. Andrew, 75
Cameron, Scott, 931
Carroll, Sean B., 716
Cech, Thomas R., 783
Celniker, Susan E., 111
Chalifour, Lorraine E., 1096
Chambon, Pierre, 794
Chandy, P. Scott, 1028
Chapman, V.M., 1039
Charlton, Jillian, 594
Chater, Keith F., 1305
Chen, Shining, 1118
Cheng, Soo-Chen, 1014
Chiang, Christina H., 197
Chinnadurai, G., 645
Chodosh, Lewis A., 973
Chua, Nam-Hai, 247
Chung, Siu-Wah, 358
Clarke, H.J., 1039
Coleman, Kevin G., 19
Conlon, Ronald A., 337
Corces, Victor G., 996
Costantini, Frank, 954
Côté, Serge, 862
Cotton, Patricia, 287
Court, Donald, 57
Cousens, Paul, 287
Couto, Joseph R., 445
Crowl, Robert, 57
Curtis, Peter J., 855
Dahlberg, James E., 47
Dambly-Chaudiere, Christine, 297
Darnell, J.E. Jr., 256
Davidson, Eric H., 75
Davidson, Irwin, 794
Dawid, Igor B., 124
De Montmieron, Catherine M., 603
De Robertis, Eddy M., 97
DePamphilis, Melvin L., 1096
DePinho, Ronald A., 1311
DiNardo, Stephen, 1212
Doyle, Helen, 1288
Echols, Harrison, 57
Edgar, Bruce A., 1226
Edwards, Yvonne H., 594
Einat, Paz, 1075
El Mesall, Mariam, 709
Eckert, Christian, 639
Eckert, Christian, 639
Feldmann, Jacob, 419
Ferous, Kenneth W., 931
Fluh, Robert, 247
Franz, B. Robert Jr., 1147
Frasch, Manfred, 981
Fray, Peter J., 855
Freedman, Matthew, 924
Friedrich, V. Jr., 482
Frischaufl, Anna-maria, 376
Frohnhöfer, Hans Georg, 880
Frohnhöfer, Hans Georg, 880
Fukushige, Shinichi, 585
Furuno, Nobuaki, 585
Gall, Gabriele, 471
Garber, Richard L., 544
Gehring, Walter J., 603
Gelbart, William, 868
Geller, Martin, 751
Georgopoulos, Costa P., 57
Geyer, Pamela K., 996
Ghysen, Alain, 297, 386
Giglio, Linda, 808
Gilman, Michael, 213
Glasgow, Anna C., 762
Glover, David M., 924
Godal, Tore, 465
Goodfellow, Peter N., 172
Goodman, William, 615
Gorovsky, Martin A., 683
Goto, Koji, 818
Gounari, F., 899
Graf, Thomas, 277
Grass, David S., 1065
Graves, Barbara J., 133
Grayhack, Elizabeth J., 217
Green, Pamela J., 3, 247
Green, John M., 347
Gridley, Thomas, 366
Gross, Carol A., 179, 419
Grossman, Alan D., 179
Guild, Gregory M., 829
Guise, Jeffrey W., 471
Gunst, D.A., 699
Guse, Christine, 445
Haller, Jochen, 862
Hansen, Ulla, 1096
Harlow, Patricia, 147, 1293
Harper, Jeffrey F., 573
Hart, Craig M., 217
Hatton, Kimi S., 1311
Hay, Hidenori, 585
Hay, Nissim, 659
Hayashi, Shigeo, 818
Hayashi, Shigeo, 818
Hayashida, Hidenori, 585
Hein, Mich B., 86
Herbst, R.S., 256
Hermans-Borgmeyer, Irm, 699
Herr, Winship, 1147
Herrick, Glenn, 1047
Herrmann, Bernhard G., 376
Hesse, Joanne E., 751
Hinchee, Maud A., 86
Hiromi, Yasushi, 603
Hirsh, J., 510
Hodgkin, Jonathan, 731
Hoey, Timothy, 1268
Hoffman, F. Michael, 615
Hoffmann, Nancy L., 86
Hogan, David S., 307
Holliday, R., 899
Hongo, Tasuku, 465
Horowitz, Stuart, 683
Horrell, Ann, 433
Horsch, Robert B., 86
<table>
<thead>
<tr>
<th>Author</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tucker, Philip W.</td>
<td>471</td>
</tr>
<tr>
<td>Tufaro, Frank</td>
<td>337</td>
</tr>
<tr>
<td>Tweedie, Susan</td>
<td>594</td>
</tr>
<tr>
<td>VanBogelen, Ruth A.</td>
<td>525</td>
</tr>
<tr>
<td>Vande Woude, George F.</td>
<td>1327</td>
</tr>
<tr>
<td>Vassalli, Anne</td>
<td>1201</td>
</tr>
<tr>
<td>Vassalli, Jean-Dominique</td>
<td>1201</td>
</tr>
<tr>
<td>Vaughn, Vicki</td>
<td>419</td>
</tr>
<tr>
<td>Venkatesh, L.</td>
<td>645</td>
</tr>
<tr>
<td>Vigneron, Marc</td>
<td>794</td>
</tr>
<tr>
<td>Vigoreaux, Jim O.</td>
<td>1161</td>
</tr>
<tr>
<td>Walbot, Virginia</td>
<td>1183</td>
</tr>
<tr>
<td>Walter, William A.</td>
<td>179, 419</td>
</tr>
<tr>
<td>Warner, Jonathan R.</td>
<td>1</td>
</tr>
<tr>
<td>Wasserman, Paul M.</td>
<td>1096</td>
</tr>
<tr>
<td>Weiner, Alan M.</td>
<td>808</td>
</tr>
<tr>
<td>Weinzirl, Robert</td>
<td>386</td>
</tr>
<tr>
<td>Weir, Michael P.</td>
<td>19</td>
</tr>
<tr>
<td>West, Robert W. Jr.</td>
<td>1118</td>
</tr>
<tr>
<td>Westphal, Heiner</td>
<td>1327</td>
</tr>
<tr>
<td>Whoriskey, Susan K.</td>
<td>227</td>
</tr>
<tr>
<td>Wigler, Michael</td>
<td>931</td>
</tr>
<tr>
<td>Williams, Betsey S.</td>
<td>693</td>
</tr>
<tr>
<td>Williams, Kevin</td>
<td>1047</td>
</tr>
<tr>
<td>Wirak, Dana O.</td>
<td>1096</td>
</tr>
<tr>
<td>Wong, Peter M.C.</td>
<td>358</td>
</tr>
<tr>
<td>Wu, Te-hui</td>
<td>197, 204</td>
</tr>
<tr>
<td>Wulff, Daniel L.</td>
<td>1005</td>
</tr>
<tr>
<td>Xiao, Jia-Hao</td>
<td>794</td>
</tr>
<tr>
<td>Yaffe, David</td>
<td>1075</td>
</tr>
<tr>
<td>Yamamura, K.</td>
<td>773</td>
</tr>
<tr>
<td>Yancopoulos, George D.</td>
<td>1311</td>
</tr>
<tr>
<td>Yang, Xianjie</td>
<td>217</td>
</tr>
<tr>
<td>Yaoita, Yoshio</td>
<td>465</td>
</tr>
<tr>
<td>Yonemoto, Wes</td>
<td>287</td>
</tr>
<tr>
<td>Yoshida, K.</td>
<td>645</td>
</tr>
<tr>
<td>Youderian, Philip</td>
<td>565</td>
</tr>
<tr>
<td>Yu, Su-May</td>
<td>683</td>
</tr>
<tr>
<td>Zeller, Rolf</td>
<td>97, 693</td>
</tr>
<tr>
<td>Zopf, Dieter</td>
<td>699</td>
</tr>
</tbody>
</table>
Erratum

GENES & DEVELOPMENT 1:924–930

The gnu mutation of Drosophila causes inappropriate DNA synthesis in unfertilized and fertilized eggs
Matthew Freeman and David M. Glover

The received and accepted dates were omitted. They are: Received July 16, 1987; revised version accepted August 17, 1987.

GENES & DEVELOPMENT 1:931–937

Rigorous feedback control of cAMP levels in Saccharomyces cerevisiae
Jun-ichi Nikawa, Scott Cameron, Takashi Toda, Kenneth M. Ferguson, and Michael Wigler

The received and accepted dates were omitted. They are: Received July 7, 1987; revised version accepted September 1, 1987.

GENES & DEVELOPMENT 1:1033

Activation of a cryptic 5' splice site in the upstream exon of the phage T4 td transcript: exon content, missplicing, and mRNA deletion in a fidelity mutant
P. Scott Chandry and Marlene Belfort

The following sentence should read:

Discussion
Isolation of a splicing-defective specificity mutant

The experiments presented in this study emphasize the importance of upstream exon sequences in specifying the particular phosphodiester bond that constitutes the 5' splice site, and that is therefore destined for the first cleavage in the splicing pathway and subsequent ligation.
Immunodyne immunoaffinity membrane is a technological breakthrough for in vitro diagnostic assays. This specially modified, optically pure white nylon 66 solid support membrane is ideal for immunofiltration, dot ELISA and other solid phase immunoassay protocols.

Immunodyne membrane features a chemically preactivated surface offering a higher density of covalent binding sites than technologies of the past. It permanently immobilizes proteins on contact without loss of biological activity. The total internal and external pore surface area available for specific analyte detection provides up to a 1000-fold increase over non-porous solid phases. This high surface area and binding capacity can serve to increase immunoassay rates and sensitivities in a wide variety of assay formats.

Immunodyne membrane is just one of Pall's family of microporous membranes for protein, nucleic acid and related assays: pure nylon 66 Biodyne® A, positive zeta Biodyne C, and new Loprodyne™ membrane. Loprodyne membrane is the world's first low protein binding nylon 66 membrane.

All Pall nylon membranes are intrinsically water wettable with exceptional whiteness and tensile strength critical to successful assays. Pure whiteness means perfect color discrimination even when wet. Manufactured by a special Pall process, their high tear resistance makes them ideal for engineering into fabricated devices on the production line under the most stressful conditions.

Discover how Biodyne and Loprodyne along with Pall's technical, engineering, and manufacturing support can help you successfully develop your in vitro diagnostic assay. For more information or technical assistance, contact Pall BioSupport, 77 Crescent Beach Road, Glen Cove, NY 11542; 800-645-6246 (in NY State: 516-759-1900).

Pall BioSupport
The RAS system, a proven performer in life science research, now features: 1024 x 960 digitization, normalizing of different samples or films, "rubbersheeting", automatic spot finding and labeling, 3-D image display, and cut and paste labeling for camera-ready art for publication.

Please call or write for product information.

*Developed by Loats Associates, Inc.